gametocytes have unique morphology, metabolism, and protein expression profiles in their asexual stages of development. In addition to the striking changes in their appearance, a wide variety of "exo-membrane structures" are newly formed in the gametocyte stage. Little is known about their function, localization, or three-dimensional structural information, and only some structural data, typically two-dimensional, have been reported using conventional electron microscopy or fluorescence microscopy. For better visualization of intracellular organelle and exo-membrane structures, we previously established an unroofing technique to directly observe Maurer's clefts (MCs) in asexual parasitized erythrocytes by removing the top part of the cell's membrane followed by transmission electron microscopy. We found that MCs have numerous tethers connecting themselves to the host erythrocyte membrane skeletons. In this study, we investigated the intracellular structures of gametocytes using unroofing-TEM, Serial Block Face scanning electron microscopy, and fluorescence microscopy to unveil the exo-membrane structures in gametocytes. Our data showed "balloon/pouch"-like objects budding from the parasitophorous vacuole membrane (PVM) in gametocytes, and some balloons included multiple layers of other balloons. Furthermore, numerous bubbles appeared on the inner surface of the erythrocyte membrane or PVM; these were similar to MC-like membranes but were smaller than asexual MCs. Our study demonstrated reforms exo-membranes in erythrocytes to meet stage-specific biological activities during their sexual development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441640PMC
http://dx.doi.org/10.3389/fcimb.2022.962495DOI Listing

Publication Analysis

Top Keywords

exo-membrane structures
12
structures gametocytes
12
electron microscopy
12
microscopy fluorescence
8
fluorescence microscopy
8
erythrocyte membrane
8
membrane pvm
8
gametocytes
5
microscopy
5
budding pouches
4

Similar Publications

The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications.

View Article and Find Full Text PDF

gametocytes have unique morphology, metabolism, and protein expression profiles in their asexual stages of development. In addition to the striking changes in their appearance, a wide variety of "exo-membrane structures" are newly formed in the gametocyte stage. Little is known about their function, localization, or three-dimensional structural information, and only some structural data, typically two-dimensional, have been reported using conventional electron microscopy or fluorescence microscopy.

View Article and Find Full Text PDF

Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery.

Eur J Pharm Sci

April 2019

Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Global emergence of Tigecycline resistant Acinetobacter baumannii (TRAB) is on the horizon and poses a very serious threat to human health. There is a pressing demand for suitable therapeutics against this pathogen, particularly a vaccine to protect against TRAB infections. We present a comprehensive investigation of the complete proteome of a TRAB AB031 strain to predict promiscuous antigenic, non-allergenic, virulent B-cell derived T-cell epitopes and formulate a multi-epitope vaccine against the pathogen.

View Article and Find Full Text PDF

Crystal structure of E. coli apolipoprotein N-acyl transferase.

Nat Commun

July 2017

National Laboratory of Macromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.

In Gram-negative bacteria, lipid modification of proteins is catalysed in a three-step pathway. Apolipoprotein N-acyl transferase (Lnt) catalyses the third step in this pathway, whereby it transfers an acyl chain from a phospholipid to the amine group of the N-terminal cysteine residue of the apolipoprotein. Here, we report the 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!