A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AQP4-dependent glioma cell features affect the phenotype of surrounding cells via extracellular vesicles. | LitMetric

Background: Extracellular vesicles (EVs) are membrane-enclosed particles released systemically by all cells, including tumours. Tumour EVs have been shown to manipulate their local environments as well as distal targets to sustain the tumour in a variety of tumours, including glioblastoma (GBM). We have previously demonstrated the dual role of the glial water channel aquaporin-4 (AQP4) protein in glioma progression or suppression depending on its aggregation state. However, its possible role in communication mechanisms in the microenvironment of malignant gliomas remains to be unveiled.

Results: Here we show that in GBM cells AQP4 is released via EVs that are able to affect the GBM microenvironment. To explore this role, EVs derived from invasive GBM cells expressing AQP4-tetramers or apoptotic GBM cells expressing orthogonal arrays of particles (AQP4-OAPs) were isolated, using a differential ultracentrifugation method, and were added to pre-seeded GBM cells. Confocal microscopy analysis was used to visualize the interaction and uptake of AQP4-containing EVs by recipient cells. Chemoinvasion and Caspase3/7 activation assay, performed on recipient cells after EVs uptake, revealed that EVs produced by AQP4-tetramers expressing cells were able to drive surrounding tumour cells toward the migratory phenotype, whereas EVs produced by AQP4-OAPs expressing cells drive them toward the apoptosis pathway.

Conclusion: This study demonstrates that the different GBM cell phenotypes can be transferred by AQP4-containing EVs able to influence tumour cell fate toward invasiveness or apoptosis. This study opens a new perspective on the role of AQP4 in the brain tumour microenvironment associated with the EV-dependent communication mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450326PMC
http://dx.doi.org/10.1186/s13578-022-00888-2DOI Listing

Publication Analysis

Top Keywords

gbm cells
16
cells
11
evs
9
extracellular vesicles
8
cells expressing
8
aqp4-containing evs
8
recipient cells
8
evs produced
8
expressing cells
8
cells drive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!