Glucose transport engineering allows mimicking fed-batch performance in batch mode and selection of superior producer strains.

Microb Cell Fact

Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Vasco de Quiroga 4871, 05348, Mexico City, Mexico.

Published: September 2022

Background: Fed-batch mode is the standard culture technology for industrial bioprocesses. Nevertheless, most of the early-stage cell and process development is carried out in batch cultures, which can bias the initial selection of expression systems. Cell engineering can provide an alternative to fed-batch cultures for high-throughput screening and host selection. We have previously reported a library of Escherichia coli strains with single and multiple deletions of genes involved in glucose transport. Compared to their wild type (W3110), the mutant strains displayed lower glucose uptake, growth and aerobic acetate production rates. Therefore, when cultured in batch mode, such mutants may perform similar to W3110 cultured in fed-batch mode. To test that hypothesis, we evaluated the constitutive expression of the green fluorescence protein (GFP) in batch cultures in microbioreactors using a semi defined medium supplemented with 10 or 20 g/L glucose + 0.4 g yeast extract/g glucose.

Results: The mutant strains cultured in batch mode displayed a fast-growth phase (growth rate between 0.40 and 0.60 h) followed by a slow-growth phase (growth rate between 0.05 and 0.15 h), similar to typical fed-batch cultures. The phase of slow growth is most probably caused by depletion of key amino acids. Three mutants attained the highest GFP fluorescence. Particularly, a mutant named WHIC (ΔptsHIcrr, ΔmglABC), reached a GFP fluorescence up to 14-fold greater than that of W3110. Strain WHIC was cultured in 2 L bioreactors in batch mode with 100 g/L glucose + 50 g/L yeast extract. These cultures were compared with exponentially fed-batch cultures of W3110 maintaining the same slow-growth of WHIC (0.05 h) and using the same total amount of glucose and yeast extract than in WHIC cultures. The WHIC strain produced approx. 450 mg/L GFP, while W3110 only 220 mg/L.

Conclusion: The combination of cell engineering and high throughput screening allowed the selection of a particular mutant that mimics fed-batch behavior in batch cultures. Moreover, the amount of GFP produced by the strain WHIC was substantially higher than that of W3110 under both, batch and fed-batch schemes. Therefore, our results represent a valuable technology for accelerated bioprocess development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450411PMC
http://dx.doi.org/10.1186/s12934-022-01906-1DOI Listing

Publication Analysis

Top Keywords

batch mode
16
batch cultures
12
fed-batch cultures
12
glucose transport
8
fed-batch
8
batch
8
fed-batch mode
8
cultures
8
cell engineering
8
mutant strains
8

Similar Publications

Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity.

Light Sci Appl

January 2025

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.

Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.

View Article and Find Full Text PDF

The current research assessed the effectiveness of four hybrid constructed wetland (HCW) systems for the remediation of synthetic dye wastewater with Reactive Black 5 (RB5) azo dye. All HCW systems had identical configurations, consisting of a horizontal CW followed by a vertical CW, and operated under diverse conditions such as the presence of plants (Typha angustifolia), feeding modes (batch and continuous) and intermittent aeration (4 h day). Anaerobic-aerobic conditions simulated within the HCW systems were crucial in removing the pollutants from synthetic dye wastewater.

View Article and Find Full Text PDF

The Protection of RC Columns by Bio-Inspired Honeycomb Column Thin-Walled Structure (BHTS) Under Impact Load.

Biomimetics (Basel)

December 2024

Heilongjiang Construction Investment Group Co., Ltd., Harbin 150046, China.

The bio-inspired honeycomb column thin-walled structure (BHTS) is inspired by the biological structure of beetle elytra and designed as a lightweight buffer interlayer to prevent damage to the reinforced concrete bridge pier (RCBP) under the overload impact from vehicle impact. According to the prototype structure of the pier, a batch of scale models with a scaling factor of 1:10 was produced. The BHTS buffer interlayer was installed on the reinforced concrete (RC) column specimen to carry out the steel ball impact test.

View Article and Find Full Text PDF

Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e.

View Article and Find Full Text PDF

Preparation of a As source sample for application in an offline ion source.

Appl Radiat Isot

December 2024

Facility for Rare Isotope Beams, Michigan State University, 640 South Shaw Lane, East Lansing, 48824, MI, USA; Department of Chemistry, Michigan State University, 640 South Shaw Lane, East Lansing, 48824, MI, USA. Electronic address:

For the generation of beams with the offline ion source at the Facility for Rare Isotope Beams (FRIB), suitable source samples are required. Arsenic-73 is a frequently requested user beam due to its significance in nuclear structure studies and astrophysics. In this work, we outline the process of preparing a As source sample, containing (5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!