A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An elementary quantum network of entangled optical atomic clocks. | LitMetric

Optical atomic clocks are our most precise tools to measure time and frequency. Precision frequency comparisons between clocks in separate locations enable one to probe the space-time variation of fundamental constants and the properties of dark matter, to perform geodesy and to evaluate systematic clock shifts. Measurements on independent systems are limited by the standard quantum limit; measurements on entangled systems can surpass the standard quantum limit to reach the ultimate precision allowed by quantum theory-the Heisenberg limit. Although local entangling operations have demonstrated this enhancement at microscopic distances, comparisons between remote atomic clocks require the rapid generation of high-fidelity entanglement between systems that have no intrinsic interactions. Here we report the use of a photonic link to entangle two Sr ions separated by a macroscopic distance (approximately 2 m) to demonstrate an elementary quantum network of entangled optical clocks. For frequency comparisons between the ions, we find that entanglement reduces the measurement uncertainty by nearly [Formula: see text], the value predicted for the Heisenberg limit. Today's optical clocks are typically limited by dephasing of the probe laser; in this regime, we find that entanglement yields a factor of 2 reduction in the measurement uncertainty compared with conventional correlation spectroscopy techniques. We demonstrate this enhancement for the measurement of a frequency shift applied to one of the clocks. This two-node network could be extended to additional nodes, to other species of trapped particles or-through local operations-to larger entangled systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-022-05088-zDOI Listing

Publication Analysis

Top Keywords

atomic clocks
12
elementary quantum
8
quantum network
8
network entangled
8
entangled optical
8
optical atomic
8
frequency comparisons
8
standard quantum
8
quantum limit
8
entangled systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!