A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatio-temporal predictions of COVID-19 test positivity in Uppsala County, Sweden: a comparative approach. | LitMetric

Spatio-temporal predictions of COVID-19 test positivity in Uppsala County, Sweden: a comparative approach.

Sci Rep

Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden.

Published: September 2022

Previous spatio-temporal COVID-19 prediction models have focused on the prediction of subsequent number of cases, and have shown varying accuracy and lack of high geographical resolution. We aimed to predict trends in COVID-19 test positivity, an important marker for planning local testing capacity and accessibility. We included a full year of information (June 29, 2020-July 4, 2021) with both direct and indirect indicators of transmission, e.g. mobility data, number of calls to the national healthcare advice line and vaccination coverage from Uppsala County, Sweden, as potential predictors. We developed four models for a 1-week-window, based on gradient boosting (GB), random forest (RF), autoregressive integrated moving average (ARIMA) and integrated nested laplace approximations (INLA). Three of the models (GB, RF and INLA) outperformed the naïve baseline model after data from a full pandemic wave became available and demonstrated moderate accuracy. An ensemble model of these three models slightly improved the average root mean square error to 0.039 compared to 0.040 for GB, RF and INLA, 0.055 for ARIMA and 0.046 for the naïve model. Our findings indicate that the collection of a wide variety of data can contribute to spatio-temporal predictions of COVID-19 test positivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450842PMC
http://dx.doi.org/10.1038/s41598-022-19155-yDOI Listing

Publication Analysis

Top Keywords

covid-19 test
12
test positivity
12
spatio-temporal predictions
8
predictions covid-19
8
uppsala county
8
county sweden
8
three models
8
covid-19
4
positivity uppsala
4
sweden comparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!