Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies with high mortality and poor prognosis. Baicalein, one of the major and bioactive flavonoids isolated from Scutellaria baicalensis Georgi, which is reported to have anti-proliferation effect in varying cancers, including HCC, whose underlying molecular mechanism is still largely unknown. In this study, we found that baicalein significantly inhibited proliferation and colony formation, blocked cell cycle, and promoted apoptosis in HCC cells MHCC-97H and SMMC-7721 in vitro and reduced tumor volume and weight in vivo. Increased microRNA (miR)-3,178 levels and decreased histone deacetylase 10 (HDAC10) expression were found in cells treated with baicalein and in patients' HCC tissues. HDAC10 was identified as a target gene of miR-3,178 by luciferase activity and western blot. Both baicalein treatment and overexpression of miR-3,178 could downregulate HDAC10 protein expression and inactivated AKT, MDM2/p53/Bcl2/Bax and FoxO3α/p27/CDK2/Cyclin E1 signal pathways. Not only that, knockdown of miR-3,178 could partly abolish the effects of baicalein and the restoration of HDAC10 could abated miR-3,178-mediated role in HCC cells. Collectively, baicalein inhibits cell viability, blocks cell cycle, and induces apoptosis in HCC cells by regulating the miR-3,178/HDAC10 pathway. This finding indicated that baicalein might be promising for treatment of HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.7613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!