Background: Idiopathic bradyarrhythmia is considered to be due to pathological degeneration of the cardiac conduction system (CCS) during aging. There appears to have been no comprehensive genetic investigations in patients with idiopathic bradyarrhythmia.
Methods and results: Ten autopsy cases with advanced bradyarrhythmia (6 men and 4 women; age: 70-94 years, 81.5±6.9 years; 5 cases each of sinus node dysfunction [SND] and complete atrioventricular block [CAVB]) were genetically investigated by using whole-exome sequencing. Morphometric analysis of the CCS was performed with sex-, age- and comorbidity-matched control cases. As a result, severe loss of nodal cells and distal atrioventricular conduction system were found in SND and CAVB, respectively. However, the conduction tissue loss was not significant in either the atrioventricular node or the proximal bundle of His in CAVB cases. A total of 13 heterozygous potential variants were found in 3 CAVB and 2 SND cases. Of these 13 variants, 4 were missense in the known progressive cardiac conduction disease-related genes: GATA4 and RYR2. In the remaining 9 variants, 5 were loss-of-function mutation with highly possible pathogenicity.
Conclusions: In addition to degenerative changes of selectively vulnerable areas in the heart during advancing age, the vulnerability of the CCS, which may be associated with "rare variants of small effect," may also be a contributing factor to the degeneration of CCS, leading to "idiopathic" bradyarrhythmia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1253/circj.CJ-22-0397 | DOI Listing |
Mol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
Respir Res
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.
Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.
BMC Genomics
January 2025
College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.
Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!