Dopamine drives neuronal excitability via KCNQ channel phosphorylation for reward behavior.

Cell Rep

Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan. Electronic address:

Published: September 2022

Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.111309DOI Listing

Publication Analysis

Top Keywords

reward behavior
16
neuronal excitability
8
kcnq channel
8
dopamine signaling
8
msn excitability
8
firing rates
8
nac slices
8
kcnq2
6
reward
5
dopamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!