Perfluorinated alkyl substances (PFASs) are persistent, toxic, ubiquitously distributed, and bioaccumulated substances, which have attracted increasing concern. To investigate the environmental effects of PFASs, there is a need to develop a sensitive, rapid, and efficient method for detecting trace level PFASs. In this study, a conjugated microporous polymer (CMP) with loading of fluorine, fabricated by Sonogashira-Hagihara cross-coupling, was exploited as a solid-phase extraction (SPE) adsorbent. The prepared fluorine-functionalized CMP (FCMP), which showed a large surface area of 1089 m·g, high porosity, and good chemical stability, was used to extract PFASs from water samples. The adsorption mechanism was investigated using a sorption isotherm model, and the main interactions were fluorous and hydrophobic affinity. The FCMP-based SPE combined with high-performance liquid chromatography-tandem mass spectrometry achieved low limits of detection (0.19-0.97 ng·L), wide linear range (2-1600 ng·L), and good reproducibility (3.4%-12.9%) under the optimal conditions. Furthermore, the approach was utilized for the analysis of three water samples (snow, river water, and irrigation water) to evaluate its reliability, and satisfactory recovery (70.5%-127.5%) was obtained. Thus, FCMP was feasible SPE adsorbents for the selective extraction of PFASs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.463457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!