Until now, workers in the field of fatty acid metabolism have suggested that the substrates are isopotential with the enzymes and that the reactions are forced to completion by the formation of charge-transfer complexes [Gustafson, W. G., Feinberg, B. A., & McFarland, J. T. (1986) J. Biol. Chem. 261, 7733-7741]. To date, no experimental evidence for this hypothesis exists. The work presented here shows that the butyryl-CoA/crotonyl-CoA couple is not isopotential with the enzymes with which it interacts. The potential of the butyryl-CoA/crotonyl-CoA couple (E ' = -0.013 V) is significantly more positive than the potential of either of the enzymes with which it interacts, bacterial butyryl-CoA dehydrogenase (E ' = -0.079 V) and mammalian general acyl-CoA dehydrogenase (E ' = 0.133 V). These data imply that the regulation of enzyme potential is essential for any electron transfer from substrate to enzyme to occur in mammalian or bacterial systems. In support of this assertion, a significant shift in potential for bacterial butyryl-CoA dehydrogenase (an analogue of the mammalian enzyme) in the presence of butyryl-CoA and crotonyl-CoA is reported. The potential is shifted positive by 60 mV. Larger potential shifts will undoubtedly be observed with the mammalian enzyme, which would be consistent with the catalytic direction of electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00383a033DOI Listing

Publication Analysis

Top Keywords

butyryl-coa dehydrogenase
12
isopotential enzymes
8
butyryl-coa/crotonyl-coa couple
8
enzymes interacts
8
bacterial butyryl-coa
8
electron transfer
8
mammalian enzyme
8
potential
6
regulation butyryl-coa
4
dehydrogenase
4

Similar Publications

Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate.

J Environ Manage

January 2025

College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China. Electronic address:

Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2.

View Article and Find Full Text PDF

Butyrate as a growth factor of Clostridium acetobutylicum.

Metab Eng

November 2024

Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. Electronic address:

The butyrate biosynthetic pathway not only contributes to electron management and energy generation in butyrate forming bacteria, but also confers evolutionary advantages to the host by inhibiting the growth of surrounding butyrate-sensitive microbes. While high butyrate levels induce toxic stress, effects of non-toxic levels on cell growth, health, metabolism, and sporulation remain unclear. Here, we show that butyrate stimulates cellular processes of Clostridium acetobutylicum, a model butyrate forming Firmicute.

View Article and Find Full Text PDF

Construction of a redox-coupled pathway co-metabolizing glucose and acetate for high-yield production of butyl butyrate in Escherichia coli.

Bioresour Technol

December 2024

Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

The carbon and energy efficiency of a biomanufacturing process is of crucial importance in determining its economic viability. Formate dehydrogenase has been demonstrated to be beneficial in regenerating NADH from formate produced during sugar metabolism, thereby creating energy-efficient systems. Nevertheless, introducing enzyme(s) for butyryl butyrate (BB) biosynthesis based on this system, only 1.

View Article and Find Full Text PDF

New Electron-Transfer Chain to a Flavodiiron Protein in Couples Butyryl-CoA Oxidation to O Reduction.

Biochemistry

September 2024

Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada.

, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which mitigates against oxidative and nitrosative stress. Inspection of the subsp.

View Article and Find Full Text PDF

Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!