PARP inhibitors (PARPi) have emerged as promising cancer therapeutics capable of targeting specific DNA repair pathways, but their mechanism of action with respect to PARP1-DNA retention remains unclear. Here, we developed single-molecule assays to directly monitor the retention of PARP1 on DNA lesions in real time. Our study reveals a two-step mechanism by which PARPi modulate the retention of PARP1 on DNA lesions, consisting of a primary step of catalytic inhibition via binding competition with NAD followed by an allosteric modulation of bound PARPi. While clinically relevant PARPi exhibit distinct allosteric modulation activities that can either increase retention of PARP1 on DNA or induce its release, their retention potencies are predominantly determined by their ability to outcompete NAD binding. These findings provide a mechanistic basis for improved PARPi selection according to their characteristic activities and enable further development of more potent inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451145PMC
http://dx.doi.org/10.1126/sciadv.abq0414DOI Listing

Publication Analysis

Top Keywords

retention parp1
12
parp1 dna
12
two-step mechanism
8
parp1-dna retention
8
parp inhibitors
8
dna lesions
8
allosteric modulation
8
retention
6
parpi
5
mechanism governing
4

Similar Publications

Single-molecule analysis of PARP1-G-quadruplex interaction.

bioRxiv

January 2025

Department of Biochemistry and Molecular Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA.

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

PARP1 inhibitors (PARPis) are used for treatment of cancers with mutations in or that are deficient in homologous recombination. The identification of modulators of PARP1 activity is critical to understand and overcome resistance to PARPis. We integrated data from three omics-scale screens to discover new regulators of PARP1 activity.

View Article and Find Full Text PDF

The complex universe of inactive PARP1.

Trends Genet

December 2024

Department of Pathology and Pathophysiology, Institute of Colorectal Surgery and Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, China. Electronic address:

Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial member of the PARP family, which modifies targets through ADP-ribosylation and plays key roles in a variety of biological processes. PARP inhibitors (PARPis) hinder ADP-ribosylation and lead to the retention of PARP1 at the DNA lesion (also known as trapping), which underlies their toxicity. However, inhibitors and mutations that make PARP1 inactive do not necessarily correlate with trapping potency, challenging the current understanding of inactivation-caused trapping.

View Article and Find Full Text PDF

Redundant but essential functions of PARP1 and PARP2 in DNA ligase I-independent DNA replication.

Nucleic Acids Res

September 2024

Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA.

While DNA ligase I (LigI) joins most Okazaki fragments, a backup pathway involving poly(ADP-ribose) synthesis, XRCC1 and DNA ligase IIIα (LigIIIα) functions along with the LigI-dependent pathway and is also capable of supporting DNA replication in the absence of LigI. Here we have addressed for the first time the roles of PARP1 and PARP2 in this pathway using isogenic null derivatives of mouse CH12F3 cells. While single and double null mutants of the parental cell line and single mutants of LIG1 null cells were viable, loss of both PARP1 and PARP2 was synthetically lethal with LigI deficiency.

View Article and Find Full Text PDF

SMARCA2 and SMARCA4 Participate in DNA Damage Repair.

Front Biosci (Landmark Ed)

July 2024

SynRx Therapeutics, Chicago, IL 60642, USA.

Background: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear.

Methods: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!