Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484640 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010430 | DOI Listing |
J Anim Physiol Anim Nutr (Berl)
January 2025
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany.
Bone damages in laying hens are of great concern in poultry farming. Besides various risk factors like housing systems or nutrient supply during egg production, it has often been hypothesized that genetically high-performing laying hens may be more prone to bone damages. The relevance of dietary support during the rearing period of pullets for optimal bone development has been little addressed so far.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China.
Objectives: This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications.
Methods: This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7.
PLoS One
January 2025
Department of Anatomy, University Hospital Essen, Essen, Germany.
Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.
View Article and Find Full Text PDFExp Physiol
January 2025
Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!