Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) have been identified as major regulators of cold acclimation in many angiosperm plants. However, their origin and evolutionary process associated to cold responsiveness are still lacking. By integrating multi-omics data of genomes, transcriptomes, and CBFs/DREB1s genome-wide binding profiles, we unveil the origin and evolution of CBFs/DREB1s and their regulatory network. Gene collinearity and phylogeny analyses show that CBF/DREB1 is an innovation evolved from tandem duplication-derived DREB III gene. A subsequent event of ε-whole genome duplication led to two CBF/DREB1 archetypes (Clades I and II) in ancient angiosperms. In contrast to cold-insensitivity of Clade I and their parent DREB III genes, Clade II evolved a further innovation in cold-sensitive response and was stepwise expanded in eudicots and monocots by independent duplications. In geological time, the duplication events were mainly enriched around the Cretaceous-Paleogene (K-Pg) boundary and/or in the Late Cenozoic Ice Age, when the global average temperature significantly decreased. Consequently, the duplicated CBF/DREB1 genes contributed to the rewiring of CBFs/DREB1s-regulatory network for cold tolerance. Altogether, our results highlight an origin and convergent evolution of CBFs/DREB1s and their regulatory network probably for angiosperms adaptation to global cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jipb.13357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!