A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface Oxidation of Phenolic Aldehydes: Fragmentation, Functionalization, and Coupling Reactions. | LitMetric

Surface Oxidation of Phenolic Aldehydes: Fragmentation, Functionalization, and Coupling Reactions.

J Phys Chem A

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States.

Published: September 2022

Substantial amounts of phenolic aldehydes, represented by the structures of syringaldehyde, vanillin, and 4-hydroxybenzaldehyde, are emitted to the atmosphere during biomass burning. The oxidative transformation of phenolic aldehydes during atmospheric transport has the potential to modify the physicochemical properties of particulates, which play a vital role in Earth's climate and human health. Herein, thin solid films made of syringaldehyde, vanillin, and 4-hydroxybenzaldehyde are oxidized in contact with O(g) under a relative humidity of 74% representative of average global conditions. New physical insights into the surface reactions are achieved by analyzing isopropanol-extracted films before and during oxidation by multiple techniques. Changes in electronic transitions at 220, 310, and 350-400 nm registered by UV-vis spectroscopy show that the oxidized films have enhanced mass absorption coefficients at λ > 300 nm. Electrospray ionization (ESI) mass spectrometry (MS) and ion chromatography with conductivity and MS detection of extracted oxidized films confirm aromatic ring cleavage of syringaldehyde and vanillin by O(g) with the production of carboxylic acids. Carboxylic acids were observed as anions ([M - H]) at / 45 (formic acid), 73 (glyoxylic acid), 75 (glycolic acid), 89 (oxalic acid), 115 (maleic acid), 117 (mesoxalic acid), 119 (tartronic acid), and 129 (maleic acid monomethyl ester), while other polyfunctional products were registered by ultrahigh-pressure liquid chromatography with UV-vis and MS detection. In situ production of hydroxyl radicals is confirmed by demethoxylation products and ipso attack at the C ring position holding the -C(H)═O group. The order of reactivity increased with the number of methoxy substituents that donate electron density to the aromatic ring. Combined oxidation mechanisms for the three compounds are proposed based on all of the experimental observations and explain the contribution of aged biomass burning material to secondary organic aerosol formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512012PMC
http://dx.doi.org/10.1021/acs.jpca.2c04963DOI Listing

Publication Analysis

Top Keywords

phenolic aldehydes
12
syringaldehyde vanillin
12
vanillin 4-hydroxybenzaldehyde
8
biomass burning
8
oxidized films
8
aromatic ring
8
carboxylic acids
8
acid
8
maleic acid
8
surface oxidation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!