On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827996 | PMC |
http://dx.doi.org/10.1002/anie.202210326 | DOI Listing |
J Colloid Interface Sci
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China. Electronic address:
Single-atom catalysts (SACs), known for their high atomic utilization efficiency, are highly attractive for electrochemical CO conversion. Nevertheless, it is struggling to use a single active site to overcome the linear scaling relationship among intermediates. Herein, an isolated diatomic Ni-Mn dual-sites catalyst was anchored on nitrogenated carbon, which exhibits remarkable electrocatalytic performance towards CO reduction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080.
Adv Mater
December 2024
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
J Am Chem Soc
November 2024
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
Realizing high selectivity for producing biodegradable 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) for renewable polymers from 5-hydroxymethylfurfural (HMF) biomass through ring hydrogenation on single-atom catalysts poses a considerable challenge due to the complexity of HMF functional groups and the difficulty of H dissociation. We developed a detailed reaction mechanism based on molecular dynamics (AIMD) and quantum mechanics (QM) to find that Ru single-atom catalysts can simultaneously dissociate H and perform the ring hydrogenation of biomass-derived 2,5-bis(hydroxymethyl)furan (BHMF) to produce biodegradable BHMTHF, with a free energy barrier of 0.82 eV.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
Platinum-group metals catalysts (such as Rh, Pd, Ir, Pt) have been the most efficient hydrogen evolution reaction (HER) electrocatalysts due to their moderate H adsorption strength, while the high HO-dissociation barrier in alkaline media restrains the catalytic performance of PGM catalysts. However, the optimization of the HO-dissociation barrier and *H/*OH binding energy toward their individual optima is limited due to the constraints of their scaling relationship on a single active site. Here, a coordinatively unsaturated "M─O─W" (M = Rh, Pd, Ir, Pt) active area is constructed, where H and OH species are anchored on Pt-group metal sites and inactive W sites for individual regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!