The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-022-03219-8 | DOI Listing |
Microb Cell
July 2023
Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
is a major human pathogen that utilises many surface-associated and secreted proteins to form biofilms and cause disease. However, our understanding of these processes is limited by challenges of using fluorescent protein reporters in their native environment, because they must be exported and fold correctly to become fluorescent. Here, we demonstrate the feasibility of using the monomeric superfolder GFP (msfGFP) exported from By fusing msfGFP to signal peptides for the Secretory (Sec) and Twin Arginine Translocation (Tat) pathways, the two major secretion pathways in we quantified msfGFP fluorescence in bacterial cultures and cell-free supernatant from the cultures.
View Article and Find Full Text PDFVet Parasitol
June 2023
Zoonotic Diseases and One Health group, IBSAL-CIETUS (Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases University of Salamanca), Faculty of Pharmacy, University of Salamanca, 37007, Salamanca, Spain. Electronic address:
Angiogenesis is a process by which new vessels are formed from pre-existing ones when the physiological conditions of the vascular endothelium are altered. Heartworm disease, caused by Dirofilaria immitis, causes changes in the vascular endothelium of the pulmonary arteries due to obstruction, friction, and hypoxia. The aim of this study was to analyze whether the excretory/secretory and surface-associated antigens of adult worms interact and modulates the angiogenic mechanism, viable cell number and cell migration, as well as the formation of pseudo-capillaries.
View Article and Find Full Text PDFArch Microbiol
September 2022
Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult.
View Article and Find Full Text PDFPhytopathology
September 2021
Foreign Disease-Weed Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Frederick, MD.
Phytopathogenic species are unique bacterial plant pathogens because they are obligately vectored by plant parasitic anguinid nematodes to the developing seedheads of forage grasses and cereals. This understudied group of plant-associated Actinomycetes includes the neurotoxigenic plant pathogen , which causes annual ryegrass toxicity in grazing livestock. is currently endemic to Australia and is listed as a plant pathogen select agent by the U.
View Article and Find Full Text PDFMicroorganisms
August 2020
Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, F-06903 Sophia Antipolis, France.
Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!