Atropisomerism in Drug Discovery: A Medicinal Chemistry Perspective Inspired by Atropisomeric Class I PI3K Inhibitors.

Acc Chem Res

Gilead Sciences, Inc., 199 E Blaine Street, Seattle, Washington 98102, United States.

Published: September 2022

Atropisomerism is a type of axial chirality resulting from hindered rotation about a σ bond that gives rise to nonsuperimposable stereoisomers (termed "atropisomers"). The inversion of chirality of an atropisomeric axis is a time- and temperature-dependent dynamic process occurring by simple bond rotation. For this reason, the rotational energy barrier (Δ) and the interconversion rate between an atropisomeric pair of biologically active molecules are important parameters to consider in drug discovery.Many compounds with atropisomeric axes advance into development every year. The vast majority of them have low rotational energy barriers (Δ lower than 20 kcal/mol), meaning they are rapidly equilibrating conformers and considered achiral (class 1 atropisomers). Compounds in class 2 (Δ = 20 to 30 kcal/mol) can be challenging to develop given that the stereochemical integrity of the atropisomeric axes can be compromised over time. It has been recommended that small molecule drug candidates containing one or more atropisomeric axes with rotational energy barriers greater than 30 kcal/mol (class 3 atropisomers) should be developed as single atropisomers.In medicinal chemistry, a σ bond with restricted rotation is engineered into a bioactive molecule primarily to limit its number of accessible conformations, thereby minimizing entropic and/or enthalpic energy penalties associated with biological target binding. In addition to enhanced pharmacology, potential positive outcomes of introducing atropisomerism include improved physicochemical properties and superior pharmacokinetics/ADME profiles. The application of atropisomerism in medicinal chemistry has become increasingly enabled due to recent advances in synthesis, purification, and analysis, as described in this special issue and recent review articles.Herein, we discuss two case studies from our own work in which restricting rotation about axes of atropisomerism led to significant improvements in pharmacological, physicochemical, and ADME properties for different series of PI3K inhibitors. In the first instance, a restricted axis of rotation was designed to mitigate an acid-mediated hydrolytic degradation pathway observed in a series of PI3Kδ inhibitors. The conformational constraint disrupts conjugation between a quinazolinone and a pyridine, leading to improved chemical stability under acidic conditions. In the second case study, introduction of a restricted axis of rotation between two heteroaromatic systems in a series of PI3Kβ inhibitors generated pairs of atropisomeric compounds with significantly different biological activities. Advanced profiling also demonstrated clear substrate stereospecificity in regard to metabolism by aldehyde oxidase. Gratifyingly, the eutomer (more active atropisomer) shows significantly less susceptibility for oxidative metabolism relative to the distomer (less active atropisomer). The improvements in potency, selectivity, chemical stability, and metabolic stability discussed in this manuscript are all directly related to the concept of atropisomerism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.2c00485DOI Listing

Publication Analysis

Top Keywords

medicinal chemistry
12
rotational energy
12
atropisomeric axes
12
pi3k inhibitors
8
energy barriers
8
class atropisomers
8
restricted axis
8
axis rotation
8
chemical stability
8
active atropisomer
8

Similar Publications

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

This study investigates the safety of three different daily dosages of a liquid blend containing kava and kratom (Feel Free® Classic Tonic {FFCT}) in healthy adults over six consecutive days of supplementation. Both kava and kratom have been used traditionally for hundreds of years, but there is limited data on the combined safety of these ingredients. In this randomized, double-blind, placebo-controlled trial, the participants were assigned to receive one of three daily dosages of FFCT or placebo.

View Article and Find Full Text PDF

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!