Unique Fluorescence Turn-On and Turn-Off-On Responses to Acids by a Carbazole-Based Metal-Organic Framework and Theoretical Studies.

J Am Chem Soc

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Published: September 2022

Distinct from predominately known fluorescence quenching (turn-off) detection, turn-on response to hazardous substances by luminescent metal-organic frameworks (LMOFs) could greatly avoid signal loss and susceptibility to environmental stimulus. However, such detection rarely occurs and lacks theoretical elucidations. Here, we present the first example of unique turn-on and unprecedented turn-off-on responses to a variety of acids by a stable 12-connected hexanuclear Y(III)-cluster-based LMOF material─, featuring the nondefault topology. Benefiting from the "pocket" structures formed by the carbazole-containing ligands, can sense multiple inorganic and organic acids via different degrees of fluorescence turn-on behaviors. Particularly, turn-on sensing of HNO, HCl, HBr, and TFA is hypersensitive with LODs as low as the ppb level. Theoretical calculations confirm weak interactions in acid-ligand complexes, which lead to constrained rotations of benzene moieties of the ligands when the complexes decay from excited states. These account for the turn-on response through reduced nonradiative energy consumption that competes with emissive decay. The turn-off-on response to 4-NBA and 3,5-DNBA involves an excited-state electron transfer process that dominates the turn-off stage and prohibited nonradiative decay that competes with the intrinsic emission of the ligand and dominates the turn-on stage. This work has a guiding significance for the full-scale understanding of turn-on and turn-off-on sensing performance in LMOF materials and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c06680DOI Listing

Publication Analysis

Top Keywords

turn-on
8
fluorescence turn-on
8
turn-on turn-off-on
8
turn-off-on responses
8
turn-on response
8
unique fluorescence
4
turn-off-on
4
responses acids
4
acids carbazole-based
4
carbazole-based metal-organic
4

Similar Publications

Conformation Regulation of Perylene Diimide Derivatives by Lanthanide Coordination for Turn-On Fluorescence Sensing of Sarin Simulants.

Inorg Chem

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.

Fluorescent metal-organic frameworks (MOFs) are promising sensing materials that have received much attention in recent years, in which the organic ligand conformation changes usually lead to variations of their sensing behavior. Based on this, in the present work, perylene diimide (PDI) derivatives with excellent photochemical properties closely related to their conformation and molecule packing fashion were selected as organic linkers to detect sarin simulant diethyl chlorophosphate (DCP). By the coordination interactions with large lanthanide cations through terminal carboxylate groups from the PDI derivative, a series of one-dimensional coordination polymers, named [Ln(PDICl-2COO)(μ-O)(DMF)] (SNNU-112, Ln = Yb/Tb/Sm/Nd/Pr/Gd/Eu/Er/Ce, PDICl-2COOH = ,'-bis(4-benzoic acid)-1,2,6,7-tetrachlorohydrazone-3,4,9,10-tetracarboxylic acid diimide) were synthesized.

View Article and Find Full Text PDF

Luminescent Metal-Organic Framework with Outstanding "Turn-On" Hg Sensing Ability First Constructed by an AIE Ligand.

Inorg Chem

January 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!