The expression of human epidermal growth factor receptor-2 (HER2) has important implications for pathogenesis, progression, and therapeutic efficacy of breast cancer. The detection of its variation during the treatment is crucial for therapeutic decision-making but remains a grand challenge, especially at the cellular level. Here, we develop a machine learning-driven surface-enhanced Raman spectroscopy (SERS)-integrated strategy for label-free detection of cellular HER2. Specifically, our method allows the extraction of cell-rich spectral signatures utilized for identification and classification of cancer cells with distinct HER2 expression with a high accuracy of 99.6%. By combining label-free SERS detection and machine learning-driven chemometric analysis, we are able to perform longitudinal monitoring of therapeutic efficacy at the cellular level during the treatment of HER2+ breast cancer, which aids in the subsequent decision-making and management. This work provides a promising technique capable of performing dynamic label-free spectroscopic detection for therapeutic surveillance of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c02419DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
therapeutic surveillance
8
therapeutic efficacy
8
cellular level
8
machine learning-driven
8
detection
5
therapeutic
5
label-free
4
label-free plasmon-enhanced
4
plasmon-enhanced spectroscopic
4

Similar Publications

The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.

View Article and Find Full Text PDF

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Background: Race/ethnicity may affect outcomes in metastatic breast cancer (MBC) due to biological and social determinants. We evaluated the impact of race/ethnicity on clinical, socioeconomic, and genomic characteristics, clinical trial participation, and receipt of genotype-matched therapy among patients with MBC.

Methods: A retrospective study of patients with MBC who underwent cell-free DNA testing (cfDNA, Guardant360â, 74 gene panel) between 11/2016 and 11/2020 was conducted.

View Article and Find Full Text PDF

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

Purpose: Individuals with metastatic breast cancer (MBC) may live with their disease for many years. We initiated the Johns Hopkins Hope at Hopkins Clinic to assess the needs and optimize the care of these patients.

Patients And Methods: Patients with MBC who agreed to participate in the Clinic in addition to usual care completed patient-reported outcome (PRO) surveys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!