Emulating the Signal Transmission in a Neural System Using Polymer Membranes.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Published: September 2022

Neurons are vital components of the brain. When stimulated by neurotransmitters at the dendrites, neurons deliver signals as changes in the membrane potential by ion movement. The signal transmission of a nervous system exhibits a high energy efficiency. These characteristics of neurons are being exploited to develop efficient neuromorphic computing systems. In this study, we develop chemical synapses for neuromorphic devices and emulate the signaling processes in a nervous system using a polymer membrane, in which the ionic permeability can be controlled. The polymer membrane comprises poly(diallyl-dimethylammonium chloride) and poly(3-sulfopropyl acrylate potassium salt), which have positive and negative charges, respectively. The ionic permeability of the polymer membrane is controlled by the injection of a neurotransmitter solution. This device emulates the signal transmission behavior of biological neurons depending on the concentration of the injected neurotransmitter solution. The proposed artificial neuronal signaling device can facilitate the development of bio-realistic neuromorphic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12166DOI Listing

Publication Analysis

Top Keywords

signal transmission
12
polymer membrane
12
system polymer
8
nervous system
8
neuromorphic devices
8
ionic permeability
8
neurotransmitter solution
8
emulating signal
4
transmission neural
4
neural system
4

Similar Publications

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

The UCP2/PINK1/LC3b-mediated mitophagy is involved in the protection of NRG1 against myocardial ischemia/reperfusion injury.

Redox Biol

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:

Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.

View Article and Find Full Text PDF

The impact of bisphenol A on gill health: A focus on mitochondrial dysfunction induced disorders of energy metabolism and apoptosis in Meretrix petechialis.

Aquat Toxicol

January 2025

School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China. Electronic address:

Bisphenol A (BPA), a well-known chemical compound used in various daily goods, has been associated with adverse effects on animal metabolic processes. However, the specific impacts of BPA exposure on clam gills remain largely unexplored. To investigate the effects of BPA on energy metabolism and apoptosis in Meretrix petechialis gills, clams were exposed to varying concentrations of BPA (1, 10, and 100 μg/L) for 21 days.

View Article and Find Full Text PDF

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!