We have explored the effect of low-temperature barrier discharge plasma treatment in oxygen, nitrogen, and argon on modification of the physicochemical properties of polylactic acid (PLA)-based scaffolds. The cellular-mediated immune response to the interaction of macrophages of three donors with the modified surface of PLA-based scaffolds was also investigated. Carbonization of the PLA surface accompanied by a carbon atomic concentration increase is shown to occur following plasma treatment. Argon plasma significantly affects the wettability characteristics of PLA; the hydrophilicity and lipophilicity are improved, and the surface energy is increased. The viability of cells in the presence of plasma-modified PLA scaffolds is lower than that for unmodified PLA but remains greater than that for the negative control. We find that PLA scaffolds do not cause increased expression of the proinflammatory (TNFα, IL-6, IL-1β) cytokines after 6 days of cell cultivation. At the same time, PLA scaffolds do not affect the increased production of anti-inflammatory cytokines (IL-10).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c11027DOI Listing

Publication Analysis

Top Keywords

pla scaffolds
12
low-temperature barrier
8
barrier discharge
8
discharge plasma
8
polylactic acid
8
plasma treatment
8
pla-based scaffolds
8
scaffolds
6
pla
6
plasma
4

Similar Publications

Applications of Chitosan and its Derivatives in the Treatment of Osteoarthritis.

Aging Dis

December 2024

Shandong Laboratory of Biomedical Materials Engineering, Success Bio-Tech Co., Ltd., Jinan, China.

Osteoarthritis (OA) is a common joint disease, which is mainly characterized by the degeneration of articular cartilage, inflammation of the synovial membrane of the joint, and changes in the surrounding bone tissue. With the increase of age and weight, the incidence of OA gradually increases, which seriously affects the quality of life of patients. The primary pharmacological treatments for OA include analgesics and non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

Developmental dynamics mimicking inversely engineered pericellular matrix for articular cartilage regeneration.

Biomaterials

December 2024

School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China. Electronic address:

The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes.

View Article and Find Full Text PDF

Scaffolds' designs and physical properties have an important place in tissue engineering. Using different biomaterials, scaffolds with other structures can be developed. The thermal and mechanical properties of biomaterials used in producing scaffolds with the fused deposition modeling method are significant for the application's success.

View Article and Find Full Text PDF

3D-printed biomedical polylactic acid (PLA) scaffolds were developed, and their biodegradation, as well as their thermomechanical behavior, were studied in a relevant in vitro environment. The scaffold's biodegradability profile has been monitored after immersion in a cell culture medium that contains components of blood and body fluids. Two types of biodegradation experiments were performed-a standard static one and an adapted stirring one, mimicking the body fluids' flow, respectively-to achieve a comparative investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!