Unlabelled: Multi-drug resistant (MDR) 2a, one of the leading bacterial agents of diarrhoeal mortality, has posed challenges in treatment strategies. The present study was conducted to identify potential therapeutic biomarkers using gene interaction network (GIN) in order to understand the cellular and molecular level interactions of both antimicrobial resistance (AMR) and virulence genes through topological and clustering metrics. Statistically significant differential gene expression (DGE), structural chemistry and dynamics were incorporated to elucidate biomarker for sustainable therapeutic regimen against MDR . Functional enrichments and topological metrics revealed and their direct interactors to be associated with diverse AMR mechanisms. Histidine kinase EvgS was considered as the hub protein due to its highest prevalence in the molecular interactome profiles of both the AMR (71.6%) and virulence (45.8%) clusters interconnecting several genes concerning two-component system (TCS). DGE profiles of ΔPhoPQ (deleted regulatory PhoP and sensor PhoQ) led to the upregulation of TCS comprising EvgSA thereby validating EvgS as a promising therapeutic biomarker. Druggability and structural stability of EvgS was assessed through thermal shifts, backbone stability and coarse dynamics refinement. Structure-function relationship was established revealing the C-terminal extracellular domain as the drug-binding site which was further validated through molecular dynamics simulation. Structure elucidation of identified biomarker followed by secondary and tertiary structural validation would prove pivotal for future therapeutic interventions against subverting both AMR and virulence posed by this strain.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03325-w.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440972 | PMC |
http://dx.doi.org/10.1007/s13205-022-03325-w | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiamen University, Department of Chemistry, Siminnan Road 422, 361005, Xiamen, CHINA.
Quintulene is a quintuply symmetrical cycloarene with a positively curved molecular geometry. First described by Staab and Sauer in 1984, its successful synthesis was not achieved until 2020. Due to the challenges posed by its positive curvature, structural extensions of quintulene have been studied rarely.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8th Liangxiang East Road, Room 829, Eco-Industrial Building, Beijing, 102488, Beijing, CHINA.
The structural isomerism of atomically precise nanoclusters provides a preeminent theoretical model to investigate the structure-property relationships. Herein, we synthesized three bowl-like polyoxometalate (POM)-encapsulated Ag nanoclusters (denoted as {Ag14(Sb3W30)2}-1, {Ag14(Sb3W30)2}-1a, and {Ag14(Sb3W30)2}-2) via a facile one-pot solvothermal approach. Among them, for the first time, an unprecedented isomeric {Ag14}10+ nanoclusters are obtained in polyoxoanions {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2, which should be probably induced by the different distribution of coordinating O atoms in two isomeric bowl-like {Sb3W30} ligands.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!