A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionce2e6a5cr6rde3gvmqk876glqg4pg2o0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Advances in Glycolysis Metabolism of Atherosclerosis. | LitMetric

Advances in Glycolysis Metabolism of Atherosclerosis.

J Cardiovasc Transl Res

Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.

Published: April 2023

Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field. In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12265-022-10311-3DOI Listing

Publication Analysis

Top Keywords

atherosclerosis glycolysis
8
cells
8
endothelial cells
8
smooth muscle
8
muscle cells
8
glycolysis-lactate-lactylation modification
8
advances glycolysis
4
glycolysis metabolism
4
atherosclerosis
4
metabolism atherosclerosis
4

Similar Publications

Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review.

Phytomedicine

March 2025

Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand. Electronic address:

Background: Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis.

Purpose: This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved.

View Article and Find Full Text PDF

The role of mA modification during macrophage metabolic reprogramming in human diseases and animal models.

Front Immunol

March 2025

Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Macrophage metabolic reprogramming refers to the process by which macrophages adjust their physiological pathways to meet survival and functional demands in different immune microenvironments. This involves a range of metabolic pathways, including glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and cholesterol transport. By modulating the expression and activity of key enzymes and molecules within these pathways, macrophages can make the transition between pro- and anti-inflammatory phenotypes, thereby linking metabolic reprogramming to inflammatory responses and the progression of several diseases, such as atherosclerosis, inflammatory bowel disease (IBD), and acute lung injury (ALI).

View Article and Find Full Text PDF

Background And Aim: Generation of functional cardiomyocytes from human pluripotent stem cells (hPSCs) offers promising applications for cardiac regenerative medicine. Proper control of pluripotency and differentiation is vital for generating high-quality cardiomyocytes and repairing damaged myocardium. Cathepsin K, a lysosomal cysteine protease, is a potential target for cardiovascular disease treatment; however, its role in cardiomyocyte differentiation and regeneration is unclear.

View Article and Find Full Text PDF

The formation of macrophage (Mφ) foam cells is a hallmark of atherosclerosis, yet how the process of lipid loading can modulate Mφ inflammatory responses by rewiring their intracellular metabolic circuits is not well understood. Our previous studies have shown that the accumulation of oxidized LDL (oxLDL) or free cholesterol in Mφs impaired their inflammatory response by suppressing HIF-1α-mediated glycolysis and upregulating NRF2 antioxidative response. However, it remains unclear if other metabolic processes are also contributory.

View Article and Find Full Text PDF

B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!