Accurate prediction of the remaining driving range of electric vehicles is difficult because the state-of-the-art sensors for measuring battery current are not accurate enough to estimate the state of charge. This is because the battery current of EVs can reach a maximum of several hundred amperes while the average current is only approximately 10 A, and ordinary sensors do not have an accuracy of several tens of milliamperes while maintaining a dynamic range of several hundred amperes. Therefore, the state of charge has to be estimated with an ambiguity of approximately 10%, which makes the battery usage inefficient. This study resolves this limitation by developing a diamond quantum sensor with an inherently wide dynamic range and high sensitivity for measuring the battery current. The design uses the differential detection of two sensors to eliminate in-vehicle common-mode environmental noise, and a mixed analog-digital control to trace the magnetic resonance microwave frequencies of the quantum sensor without deviation over a wide dynamic range. The prototype battery monitor was fabricated and tested. The battery module current was measured up to 130 A covering WLTC driving pattern, and the accuracy of the current sensor to estimate battery state of charge was analyzed to be 10 mA, which will lead to 0.2% CO reduction emitted in the 2030 WW transportation field. Moreover, an operating temperature range of - 40 to + 85 °C and a maximum current dynamic range of ± 1000 A were confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448744PMC
http://dx.doi.org/10.1038/s41598-022-18106-xDOI Listing

Publication Analysis

Top Keywords

dynamic range
20
wide dynamic
12
battery current
12
state charge
12
current
8
range electric
8
diamond quantum
8
measuring battery
8
quantum sensor
8
range
7

Similar Publications

Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors.

J Biol Chem

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications.

Adv Colloid Interface Sci

December 2024

Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:

Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.

View Article and Find Full Text PDF

Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization.

Cell Host Microbe

December 2024

The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C.

View Article and Find Full Text PDF

Humidity sensors have been widely used to monitor humidity in daily life, agriculture fields, and so on. However, conventional sensors are not suitable for wearable devices because of their large dimensions and rigid substrates. Hence, we report a fast response, highly sensitive, and fully flexible humidity sensor on a PI substrate based on the composite material of reduced graphene oxide (rGO)/MoS, with a response time of 0.

View Article and Find Full Text PDF

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!