A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation. | LitMetric

Specific DNA methylation at CpG and non-CpG sites is essential for chromatin regulation. The DNA methyltransferase DNMT3A interacts with target sites surrounded by variable DNA sequences with its TRD and RD loops, but the functional necessity of these interactions is unclear. We investigated CpG and non-CpG methylation in a randomized sequence context using WT DNMT3A and several DNMT3A variants containing mutations at DNA-interacting residues. Our data revealed that the flanking sequence of target sites between the -2 and up to the +8 position modulates methylation rates >100-fold. Non-CpG methylation flanking preferences were even stronger and favor C(+1). R836 and N838 in concert mediate recognition of the CpG guanine. R836 changes its conformation in a flanking sequence-dependent manner and either contacts the CpG guanine or the +1/+2 flank, thereby coupling the interaction with both sequence elements. R836 suppresses activity at CNT sites but supports methylation of CAC substrates, the preferred target for non-CpG methylation of DNMT3A in cells. N838 helps to balance this effect and prevent the preference for C(+1) from becoming too strong. Surprisingly, we found L883 reduces DNMT3A activity despite being highly conserved in evolution. However, mutations at L883 disrupt the DNMT3A-specific DNA interactions of the RD loop, leading to altered flanking sequence preferences. Similar effects occur after the R882H mutation in cancer cells. Our data reveal that DNMT3A forms flexible and interdependent interaction networks with the CpG guanine and flanking residues that ensure recognition of the CpG and efficient methylation of the cytosine in contexts of variable flanking sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530848PMC
http://dx.doi.org/10.1016/j.jbc.2022.102462DOI Listing

Publication Analysis

Top Keywords

flanking sequence
12
non-cpg methylation
12
cpg guanine
12
dna methyltransferase
8
methyltransferase dnmt3a
8
dnmt3a forms
8
interaction networks
8
networks cpg
8
sequence elements
8
methylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!