Anaerobic ammonium oxidation (anammox) is carbon friendly biological nitrogen removal process, and recently more focus is given to improving the anammox activity. Because of its high adsorption and modifiability, graphene and its derivative in wastewater treatment have received much attention. However, the specific effects and mechanisms of graphene oxide (GO) and reduced graphene oxide (RGO) on anammox are still controversial. Extensive data analysis was performed to explore the effects of GO and RGO on anammox. Statistical analysis revealed that 100 mg/L GO significantly promoted the anammox process, while 200 mg/L of GO inhibited the anammox process. The promotion of anammox performance under the influence of RGO was dependent on the temperature. The Logistic model was utilized for depicting the variation of nitrogen removal efficiency under promoting dosage of graphene oxides. A neural network model-based analysis was performed to reach anammox's potential mechanisms under the influence of two graphene oxides. Spearman correlation analysis showed that GO and RGO had significant positive correlations with nitrogen removal efficiency and specific anammox activity (p < 0.01), especially for RGO. In addition, the abundance of Planctomycetes and Nitrospirae was positively correlated with the addition of graphene oxides. This work comprehensively unraveled the role of graphene oxide materials on the anammox process and provided practical directions for the enhancement of anammox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136307 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFSci Rep
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
Sci Rep
January 2025
Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!