Objective: Glioblastoma is one of the most common intracranial malignant tumors with an unfavorable prognosis, and iron metabolism as well as ferroptosis are implicated in the pathogenesis of glioblastoma. The present study aims to decipher the role and mechanisms of tripartite motif-containing protein 7 (TRIM7) in ferroptosis and glioblastoma progression.
Methods: Stable TRIM7-deficient or overexpressing human glioblastoma cells were generated with lentiviral vectors, and cell survival, lipid peroxidation and iron metabolism were evaluated. Immunoprecipitation, protein degradation and ubiquitination assays were performed to demonstrate the regulation of TRIM7 on its candidate proteins.
Results: TRIM7 expression was elevated in human glioblastoma cells and tissues. TRIM7 silence suppressed growth and induced death, while TRIM7 overexpression facilitated growth and inhibited death of human glioblastoma cells. Meanwhile, TRIM7-silenced cells exhibited increased iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by TRIM7 overexpression. Mechanistically, TRIM7 directly bound to and ubiquitinated nuclear receptor coactivator 4 (NCOA4) using K48-linked chains, thereby reducing NCOA4-mediated ferritinophagy and ferroptosis of human glioblastoma cells. Moreover, we found that TRIM7 deletion sensitized human glioblastoma cells to temozolomide therapy.
Conclusion: We for the first time demonstrate that TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells, and our findings provide a novel insight into the progression and treatment for human glioblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468590 | PMC |
http://dx.doi.org/10.1016/j.redox.2022.102451 | DOI Listing |
Mol Carcinog
January 2025
Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China.
Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
School of Medicine, Hangzhou City University, Hangzhou 310015, China.
Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABA receptor agonist, directly into the mPFC-GBM (1µg/rat/2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!