The vegetation deterioration and pollution expansion from non-ferrous metal tailings pond have been found in many countries leading to water soil erosion and human health risk. Conventional ecological remediation technologies of mine tailings such as capping were costly and elusive. This study provided an economic and effective model as an alternative by substrate amelioration and vegetation restoration. A field experiment was carried out on a silver tailings pond in southwest China. Tailings substrate was ameliorated by adding organic matter (decomposed chicken manure, DCM), structural conditioner (polyacrylamide, PAM), water-retaining agent (acrylic acid-bentonite water-retaining agent, AAB), and heavy metal immobilizer (biofuel ash, BFA), which were optimized by laboratory experiment. Native heavy metal hyperaccumulator, Bidens pilosa, was colonized. Vegetation coverage and plant height of Bidens pilosa reached about 80% and over 30 cm respectively after 3 months, and the turbidity of tailings leaching solution decreased by 60%. The practice showed that the proportion of available heavy metals in tailings substrate was significantly lower than that in the soil surrounding mining area. Immobilization didn't have stabilization effect on Cd, Zn, and Pb, and As was only 0.002%, phytoremediation had stabilization effect of Cd, Zn, As, and Pb were 2.5-3.5%, 1-2%, 0.25-0.5%, and 0.25-0.75%. Phytoremediation was more effective significantly in controlling heavy metal pollution risk of tailings than immobilization. These results provided a new ecological remediation OSA-NHC model, meaning a combination of optimal substrate amelioration and native hyperaccumulator colonization, which could achieve vegetation restoration and augment heavy metal pollution control in non-ferrous metal tailings pond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116141 | DOI Listing |
Microbiome
December 2024
College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
J Hazard Mater
December 2024
Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China. Electronic address:
The long-term mining of vanadium-titanium (V-Ti) magnetite has generated a large accumulation of tailings, which can lead to metal pollution via microbial bioleaching. Current research has focused on the bioleaching of minerals, and a few studies have explored microbial responses to metals only through limited metabolite concentrations. However, the trigger mechanisms of metal release during the V-Ti magnetite tailing bioleaching and key gene regulatory pathways for organic acid metabolism are still unclear.
View Article and Find Full Text PDFHuan Jing Ke Xue
December 2024
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
To study the pollution characteristics and ecological risks of heavy metals in tailings ponds is an important prerequisite for protecting the surrounding environment and human health. The total amount and morphology of five "toxic" heavy metals (As, Cr, Cd, Pb, and Hg) in Kafang tin tailings pond were determined. Based on the aforementioned, we analyzed the distribution characteristics of heavy metals.
View Article and Find Full Text PDFHuan Jing Ke Xue
December 2024
China National Environmental Monitoring Centre, Beijing 100012, China.
To analyze the source apportionment, potential ecological risk, and health risk of heavy metals in soils surrounding a manganese tailings pond in Chongqing, a positive matrix factorization (PMF) model, potential ecological risk index, and health risk assessment model were used. Further, all three models were combined to explore the risks of heavy metals in soils by different pollution sources to determine the priority control factors. The results showed that except for the Cr concentration, the average values of Mn, Cd, As, Pb, Cu, Zn, and Ni concentration were higher than their corresponding background values.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!