Although Ag-based materials are efficient against antibiotic-resistant bacteria, their high toxicity to living organisms represents a major challenge for obtaining useful products. In this work, we report the bactericidal activity of AgVO/β-AgVO heterostructures, which proved to be effective against Klebsiella pneumoniae (ATCC 1706, a standard strain; A54970, a multidrug-resistant carbapenemase (KPC)-producing strain; A34057, a multidrug-resistant strain capable of producing extended spectrum beta-lactamases (ESBL); and a community-isolated strain, A58240) at minimum inhibitory concentrations (MIC) as low as 62.5 μg/mL. This activity is higher than that reported for the individual silver vanadates (AgVO or β-AgVO) owing to the synergistic interactions between both semiconductors. However, the most efficient heterostructure was found to be toxic to mouse 3 T3 fibroblasts and to L. sativa and C. sativus seeds, as indicated by MTT ((4,5 - dimethylthiazol -2yl) 2,5 -diphenylbromide), neutral red assays and germination index measurements. The antimicrobial, phytotoxic and cytotoxic activities were all associated with an efficient generation of reactive oxygen species (ROS) in the heterostructure, especially OH and O radicals. The ROS production by AgVO/β-AgVO heterostructures was measured through photodegradation studies with Rhodamine B. While the bactericidal activity of the heterostructures is promising, especially when compared to Ag-based materials, their use in practical applications will require encapsulation either to avoid leaching or to mitigate their toxicity to humans, animals and plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2022.213097 | DOI Listing |
AMB Express
January 2025
Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:
This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
Fortimicins (FTMs) are fortamine-containing aminoglycoside antibiotics (AGAs) produced by M. olivasterospora DSM 43868 with excellent bactericidal activities against a wide range of Enterobacteriaceae and synergistic activity against multidrug-resistant (MDR) pathogens. Fortimicin-A (FTM-A), the most active member of FTMs, has the lowest susceptibility to inactivation by the aminoglycoside modifying enzymes (AMEs).
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFFood Sci Technol Int
January 2025
Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye.
This study aimed to evaluate the antimicrobial effectiveness of cumin seed essential oil (CEO) after encapsulation in chickpea protein-maltodextrin matrix by spray drying and to provide insight into potential use as a natural ingredient in meat-based products. The surface morphology results of encapsulated CEO showed the dispersion in the wall material matrix, and the observed specific common peaks in the FT-IR spectra of encapsulated and non-encapsulated CEO proved the successful encapsulation. The antibacterial activity of non-encapsulated CEO against BC1402, ATCC 27853, Typhimurium ATCC 0402, ATCC 25923 were first evaluated by disc diffusion assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!