Birds perform astounding aerial maneuvers by actuating their shoulder, elbow, and wrist joints to morph their wing shape. This maneuverability is desirable for similar-sized uncrewed aerial vehicles (UAVs) and can be analyzed through the lens of dynamic flight stability. Quantifying avian dynamic stability is challenging as it is dictated by aerodynamics and inertia, which must both account for birds' complex and variable morphology. To date, avian dynamic stability across flight conditions remains largely unknown. Here, we fill this gap by quantifying how a gull can use wing morphing to adjust its longitudinal dynamic response. We found that it was necessary to adjust the shoulder angle to achieve trimmed flight and that most trimmed configurations were longitudinally stable except for configurations with high wrist angles. Our results showed that as flight speed increases, the gull could fold or sweep its wings backward to trim. Further, a trimmed gull can use its wing joints to control the frequencies and damping ratios of the longitudinal oscillatory modes. We found a more damped phugoid mode than similar-sized UAVs, possibly reducing speed sensitivity to perturbations, such as gusts. Although most configurations had controllable short-period flying qualities, the heavily damped phugoid mode indicates a sluggish response to control inputs, which may be overcome while maneuvering by morphing into an unstable flight configuration. Our study shows that gulls use their shoulder, wrist, and elbow joints to negotiate trade-offs in stability and control and points the way forward for designing UAVs with avian-like maneuverability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477410 | PMC |
http://dx.doi.org/10.1073/pnas.2204847119 | DOI Listing |
Npj Robot
November 2024
Department of Mechanical Engineering, Laboratory of Intelligent Systems, EPFL, Lausanne, Switzerland.
Avian-inspired drones feature morphing wing and tail surfaces, enhancing agility and adaptability in flight. Despite their large potential, realising their full capabilities remains challenging due to the lack of generalized control strategies accommodating their large degrees of freedom and cross-coupling effects between their control surfaces. Here we propose a new body-rate controller for avian-inspired drones that uses all available actuators to control the motion of the drone.
View Article and Find Full Text PDFSci Robot
November 2024
Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.
Gliding birds lack a vertical tail, yet they fly stably rudderless in turbulence without needing discrete flaps to steer. In contrast, nearly all airplanes need vertical tails to damp Dutch roll oscillations and to control yaw. The few exceptions that lack a vertical tail either leverage differential drag-based yaw actuators or their fixed planforms are carefully tuned for passively stable Dutch roll and proverse yaw.
View Article and Find Full Text PDFSci Robot
November 2024
School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
Biomimetics (Basel)
October 2024
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.
The in-plane folding wing is one of the important research directions in the field of morphing or bionic aircraft, showing the unique application value of enhancing aircraft maneuverability and gust resistance. This article provides a structural realization of an in-plane folding wing and an aeroelasticity modeling method for the folding process of the wing. By approximating the change in structural properties in each time step, a method for calculating the structural transient response expressed in recursive form is obtained.
View Article and Find Full Text PDFNat Commun
September 2024
Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland.
Avian perching maneuvers are one of the most frequent and agile flight scenarios, where highly optimized flight trajectories, produced by rapid wing and tail morphing that generate high angular rates and accelerations, reduce kinetic energy at impact. While the behavioral, anatomical, and aerodynamic factors involved in these maneuvers are well described, the underlying control strategies are poorly understood. Here, we use optimal control methods on an avian-inspired drone with morphing wing and tail to test a recent hypothesis derived from perching maneuver experiments of Harris' hawks that birds minimize the distance flown at high angles of attack to dissipate kinetic energy before impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!