Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motor function assessment is crucial for post-stroke rehabilitation. Conventional evaluation methods are subjective, heavily depending on the experience of therapists. In light of the strong correlation between the stroke severity level and the performance of activities of daily living (ADLs), we explored the possibility of automatically evaluating the upper-limb Brunnstrom Recovery Stage (BRS) via three typical ADLs (tooth brushing, face washing and drinking). Multimodal data (acceleration, angular velocity, surface electromyography) were synchronously collected from 5 upper-limb-worn sensor modules. The performance of BRS evaluation system is known to be variable with different system parameters (e.g., number of sensor modules, feature types and classifiers). We systematically searched for the optimal parameters from different data segmentation strategies (five window lengths and four overlaps), 42 types of features, 12 feature optimization techniques and 9 classifiers with the leave-one-subject-out cross-validation. To achieve reliable and low-cost monitoring, we further explored whether it was possible to obtain a satisfactory result using a relatively small number of sensor modules. As a result, the proposed approach can correctly recognize the stages of all 27 participants using only three sensor modules with the optimized data segmentation parameters (window length: 7s, overlap: 50%), extracted features (simple square integral, slope sign change, modified mean absolute value 1 and modified mean absolute value 2), the feature optimization method (principal component analysis) and the logistic regression classifier. According to the literature, this is the first study to comprehensively optimize sensor configuration and parameters in each stage of the BRS classification framework. The proposed approach can serve as a factor-screening tool towards the automatic BRS classification and is promising to be further used at home.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2022.3204781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!