The generation of haploid plants accelerates the crop breeding process. One of the haploidization strategies is based on the genetic manipulation of endogenous centromere-specific histone 3 (CENH3). To extend the haploidization toolbox, we tested whether targeted in vivo degradation of CENH3 protein can be harnessed to generate haploids in Arabidopsis thaliana. We show that a recombinant anti-GFP nanobody fused to either heterologous F-box (NSlmb) or SPOP/BTB ligase proteins can recognize maternally derived enhanced yellow fluorescent protein (EYFP)-tagged CENH3 in planta and make it accessible for the ubiquitin-proteasome pathway. Outcrossing of the genomic CENH3-EYFP-complemented cenh3.1 mother with plants expressing the GFP-nanobody-targeted E3 ubiquitin ligase resulted in a haploid frequency of up to 7.6% in pooled F1 seeds. EYFP-CENH3 degradation occurred independently in embryo and endosperm cells. In reciprocal crosses, no haploid induction occurred. We propose that the uniparental degradation of EYFP-fused genomic CENH3 during early embryogenesis leads to a decrease in its level at centromeres and subsequently weakens the centromeres. The male-derived wild type CENH3 containing centromere outcompetes the CENH3-EYFP depleted centromere. Consequently, maternal chromosomes undergo elimination, resulting in haploids.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erac359DOI Listing

Publication Analysis

Top Keywords

haploid induction
8
eyfp-tagged cenh3
8
arabidopsis thaliana
8
cenh3
6
haploid
4
induction nanobody-targeted
4
nanobody-targeted ubiquitin-proteasome-based
4
degradation
4
ubiquitin-proteasome-based degradation
4
degradation eyfp-tagged
4

Similar Publications

A breeding method for Ogura CMS restorer line independent of restorer source in .

Front Genet

January 2025

National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.

The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.

View Article and Find Full Text PDF

Effects of hormone concentrations on anther cultures and the acquisition of regenerated plants of five awnless triticale genotypes.

Plant Methods

January 2025

Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Collage of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.

Background: The rapid production of doubled haploids by anther culture technology is an important breeding method for awnless triticale. The aim of this study was to explore the effects of triticale genotype and the types and ratios of exogenous hormones in the medium on the efficiency of triticale anther culture.

Results: Anthers of five triticale genotypes were cultured on four different callus induction media and the calli were induced to differentiate into green plants by culture on three different differentiation media.

View Article and Find Full Text PDF
Article Synopsis
  • Plant chromosome engineering allows the transfer of desirable traits into plants by incorporating segments from alien chromosomes, enhancing modern plant breeding.
  • Successful examples include rye chromosome segments for disease resistance and innovative techniques like centromere engineering and CRISPR/Cas technology for chromosomal manipulation.
  • These advancements broaden the possibilities for genetic improvement in crops, paving the way for future innovations in plant breeding.
View Article and Find Full Text PDF

In vivo, microspores in the anthers follow the gametophytic development pathway, culminating in the formation of pollen grains. Conversely, in vitro, under stress treatments, microspores can be reprogrammed into totipotent cells, initiating an embryogenic pathway that produces haploid and double-haploid embryos, which are important biotechnological tools in plant breeding. There is growing evidence that epigenetic reprogramming occurs during microspore embryogenesis through DNA methylation, but less is known about the role of histone modifications.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving callus induction methods to derive a doubled haploid (DH) callus line from poplar anthers, addressing gaps in the previously sequenced genomes.
  • - Using long-read sequencing, researchers successfully assembled a nearly complete genome of 412.13 Mb with only seven gaps, significantly improving the reference genome for poplars by annotating 34,953 protein-coding genes.
  • - This new telomere-to-telomere (T2T) genome assembly enhances understanding of poplar genetics and evolutionary studies, particularly through the identification of centromeric regions and their high-order repeats.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!