Isofurans (IsoFs) are a series of novel discovered lipid peroxidation products. This study focused on the investigation of the angiogenic property of IsoF. MTT stain assay indicated that 1 µm IsoF had the most bioactivity in rat brain endothelial cells (RBECs). IsoF significantly promoted cellular proliferation and migration and remarkably decreased staurosporine-induced apoptosis by TUNEL assay in the RBECs. It successfully up-regulated rat aortic vascularization and choroid explant sprouting, extracellular regulated protein kinases (ERK)1/2, and triggered calcium release. RT-PCR examination indicated that IsoF up-regulated tumor necrosis factor (TNF)α, angiopoietin-1 receptor (Tie2), and vascular endothelial growth factor (VEGF)-A, but did not interfere with caspase 2 and VEGF-C in the RBECs. IsoF has pro-angiogenic activity. Calcium release and ERK1/2 phosphorylation may be involved in the signaling of the IsoF-induced up-regulation of TNFα, Tie2, and VEGF-A, which could be the molecular mechanism of the pro-angiogenic activity of the IsoF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbac146 | DOI Listing |
Gels
January 2025
Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
Hypoxia-inducible factor-1α (HIF-1α) initiates the cellular response to low oxygen levels, making it an attractive target for stimulating therapeutic angiogenesis. Several small molecules have been identified that stabilize HIF-1α and activate the angiogenic signaling pathway. However, achieving therapeutic doses of bioactive small molecules in target tissues remains challenging.
View Article and Find Full Text PDFTzu Chi Med J
July 2024
Department of Chemistry, Tamkang University, New Taipei, Taiwan.
Objectives: Guo Min decoction (GMD) is a Chinese traditional medicine that can regulate allergy-related symptoms. Although GMD treatment was reported to treat allergy-associated symptoms by regulating the immune response, the rationale between GMD treatment and angiogenesis has not been reported yet. Our objective is to investigate the angiogenesis-modulating activity of GMD.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Centre for Molecular Biophysics, UPR CNRS 4301, Orleans, France.
The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China.
Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!