Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that and were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 10 to 7.51 × 10 and 3.18 × 10 to 1.11 × 10 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. and were "key stone" archaeal members of the low-DO network, whereas constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while and dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602602 | PMC |
http://dx.doi.org/10.1128/spectrum.01947-22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!