Aims: is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of Hla alone with those of the animal's immune response to infection.

Methods: Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10 colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling.

Results: Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed.

Conclusion: Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage.Cite this article:  2022;11(9):669-678.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533245PMC
http://dx.doi.org/10.1302/2046-3758.119.BJR-2022-0016.R1DOI Listing

Publication Analysis

Top Keywords

chondrocyte death
24
septic arthritis
8
vivo murine
8
immune response
8
8325-4 du1090
8
compared controls
8
joints inoculated
8
chondrocyte
7
death
6
du1090
6

Similar Publications

Natural Bioactive Compounds Exerting Health-Promoting Effects by Ameliorating Oxidative Stress.

Antioxidants (Basel)

January 2025

Guangdong Provincial Key Laboratory IRADS, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.

Oxidative stress is caused by various intrinsic and extrinsic factors [...

View Article and Find Full Text PDF

Transcriptomic Analysis and Experimental Verification of Ferroptosis Signature Genes in Osteoarthritis.

Int J Rheum Dis

January 2025

Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda Hospital of Hubei Minzu University, Enshi, China.

Osteoarthritis is a systemic disease that primarily damages articular cartilage and also affects the synovium, ligaments, and bone tissues. The key mechanisms involved are chondrocyte death and degradation of the extracellular matrix. This study aims to identify differentially expressed genes (DEGs) associated with ferroptosis and investigate their roles in the development of osteoarthritis.

View Article and Find Full Text PDF

Background: The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent degenerative disease that lacks effective therapy. Oxidative stress is one of the major factors contributing to OA; however, treatments targeting oxidative stress are still lacking. In the current study, we established an oxidative stress-induced cell death model in chondrocytes and screened drugs that may suppress oxidative stress-induced cell death.

View Article and Find Full Text PDF

Splicing to orchestrate cell fate.

Mol Ther Nucleic Acids

March 2025

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.

Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!