Objective: Studies on gait and autonomic dysfunction have been insufficient so far, particularly de novo Parkinson's disease (PD). The aim of this study was to identify the association between gait dynamics and autonomic dysfunction in patients with de novo PD.

Methods: A total 38 patients with de novo PD were retrospectively included in this study. Details of patients' dysautonomia were assessed using the Scales for Outcomes in Parkinson's Disease-Autonomic Dysfunction (SCOPA-AUT). For assessment of gait, a computerized gait analysis was performed using the GAITRite system for forward gait and backward gait. High SCOPA-AUT score (PD-HSAS) group and low SCOPA-AUT score (PD-LSAS) group were identified according to their SCOPA-AUT scores.

Results: Nineteen (50%) patients with high SCOPA-AUT scores above median value (12.5) were assigned into the PD-HSAS group and others were assigned to the PD-LSAS group. Compared with the PD-LSAS group, the PD-HSAS group exhibited slower gait, shorter stride, decreased cadence, increased double support phase, decreased swing phase, and increased variability in swing time. Total SCOPA-AUT score showed significantly positive correlations with gait variability and instability but a negative correlation with gait hypokinesia. In subdomain analysis, urinary dysautonomia was highly associated with impairment of gait dynamics. All significant results were found to be more remarkable in backward gait than in forward gait.

Conclusion: Our findings suggest that alteration in gait dynamics, especially backward gait, is highly associated with autonomic dysfunction in patients with de novo PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978258PMC
http://dx.doi.org/10.14802/jmd.22045DOI Listing

Publication Analysis

Top Keywords

patients novo
16
backward gait
16
gait
15
autonomic dysfunction
12
gait dynamics
12
scopa-aut score
12
pd-hsas group
12
pd-lsas group
12
association gait
8
novo parkinson's
8

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Outcomes and Impact of Device Iterations in Mitral Valve Transcatheter Edge-to-Edge Repair: The REPAIR Study.

JACC Cardiovasc Interv

November 2024

Department of Cardiology, Heart Center, Faculty of Medicine, University of Cologne, Cologne, Germany. Electronic address:

Background: The PASCAL P10 system for mitral valve transcatheter edge-to-edge repair has undergone iterations, including introduction of the narrower Ace implant and the Precision delivery system.

Objectives: The study sought to evaluate outcomes and the impact of PASCAL mitral valve transcatheter edge-to-edge repair device iterations.

Methods: The REPAIR (REgistry of PAscal for mltral Regurgitation) study is an investigator-initiated, multicenter registry including consecutive patients with mitral regurgitation (MR) treated from 2019 to 2024.

View Article and Find Full Text PDF

Systolic Blood Pressure and Pulse Pressure in Heart Failure: Pooled Participant-Level Analysis of 4 Trials.

J Am Coll Cardiol

November 2024

Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Background: Hypertension is common in patients with heart failure with mildly reduced or preserved ejection fraction (HFmrEF/HFpEF), and current guidelines recommend treating systolic blood pressure (SBP) to a target <130 mm Hg. However, data supporting treatment to this target are limited. Additionally, pulse pressure (PP), a marker of aortic stiffness, has been associated with increased risk of cardiovascular events, but its prognostic impact in HFpEF has not been extensively studied.

View Article and Find Full Text PDF

It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.

View Article and Find Full Text PDF

A Rare Case of Primary Chondrosarcoma of the Breast: A Case Report and Comprehensive Literature Review.

Discoveries (Craiova)

September 2024

Department of Oncopathology, Homi Bhabha Cancer Hospital (HBCH) and Mahamana Pandit Madan Mohan Malviya Cancer Centre (MPMMCC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.

Breast sarcomas are a diverse group of malignant neoplasms originating from the mammary stroma. They are uncommon tumors, often occurring as a component of other tumors. Among malignant breast mesenchymal tumors, pure sarcomas lacking epithelial components are even rarer, comprising only 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!