Mersacidin is an antimicrobial class II lanthipeptide. Lanthipeptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), characterized by intramolecular lanthionine rings. These rings give lanthipeptides their bioactive structure and stability. RiPPs are produced from a gene cluster that encodes a precursor peptide and its dedicated unique modification enzymes. The field of RiPP engineering aims to recombine modification enzymes from different RiPPs to modify new substrates, resulting in new-to-nature molecules with novel or improved functionality. The enzyme MrsM from the mersacidin gene cluster installs the four lanthionine rings of mersacidin, including the uniquely small ring A. By applying MrsM in RiPP engineering, this ring could be installed in linear peptides to achieve stabilization by a very small lanthionine or to create small lanthionine-stabilized modules for chemical modification. However, the formation of unique intramolecular structures like that of mersacidin's ring A can be very stringent. Here, the formation of ring A of mersacidin is characterized by mutagenesis. A range of truncated mersacidin variants was made to identify the smallest possible construct in which this ring could still be formed. Additionally, mutants were created to study the flexibility of ring A formation. It was found that although the formation of ring A is stringent, it can be formed in a core peptide as small as five amino acids. The truncated mersacidin core peptide CTFAL is the smallest ribosomally produced lanthipeptide reported to date, and it has exciting prospects as a new module for application in RiPP engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486960 | PMC |
http://dx.doi.org/10.1021/acssynbio.2c00343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!