Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intervertebral disc degeneration (IVDD) demonstrates a gradually increased incidence and has developed into a major health problem worldwide. The nucleus pulposus is characterized by the hypoxic and avascular environment, in which hypoxia-inducible factor-1α (HIF-1α) has an important role through its participation in extracellular matrix synthesis, energy metabolism, cellular adaptation to stresses and genesis. In this study, the effects of HIF-1α on mouse primary nucleus pulposus cells (MNPCs) exposed to TNF-α were observed, the potential mechanism was explored and a rabbit IVDD model was established to verify the protective role of HIF-1α on IVDD. In vitro results demonstrated that HIF-1α could attenuate the inflammation, apoptosis and mitochondrial dysfunction induced by TNF-α in MNPCs; promote cellular anabolism; and inhibit cellular catabolism. In vivo results demonstrated that after establishment of IVDD model in rabbit, disc height and IVD extracellular matrix were decreased in a time-dependent manner, MRI analysis showed a tendency for decreased T2 values in a time-dependent manner and supplementation of HIF-1α improved histological and imaginative IVDD while downregulation of HIF-1α exacerbated this degeneration. In summary, HIF-1α protected against IVDD, possibly through reducing ROS production in the mitochondria and consequent inhibition of inflammation, metabolism disorders and apoptosis of MNPCs, which provided a potential therapeutic instrument for the treatment of IVDD diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971142 | PMC |
http://dx.doi.org/10.1007/s10753-022-01732-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!