Lipid metabolism has a profound impact on gastric cancer (GC) progression and is a newly targetable vulnerability for cancer therapy. Given the importance of lipids in cancer cellular processes, in this study we employed lipidomic clinical and transcriptomic data to connect the variations of lipid metabolism changes of GC. We constructed a clinical nomogram based on the lipid factors and other clinical items. Then by using multi-omics techniques, we established a lipid-related gene signature for individualized prognosis prediction in patients with GC. Moreover, a total of 1357 GC cases were then applied to evaluate the robustness of this model. WGCNA was used to identify co-expression modules and enriched genes associated with GC lipid metabolism. The role of key genes ACLY in GC was further investigated. The prognostic value of the lipgenesis signature was analyzed using Cox regression model, and clinical nomogram was established. Among them, we observed overexpression of ACLY significantly increased the levels of intracellular free fatty acid and triglyceride, and activated AKT/mTOR pathway to promote cancer development. In conclusion, our findings revealed that GC exhibited a reprogramming of lipid metabolism in association with an altered expression of associated genes. Among them, ACLY significantly promoted GC lipid metabolism and increased cancer cell proliferation, suggesting that this pathway can be targetable as a metabolic vulnerability in future GC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446547 | PMC |
http://dx.doi.org/10.1186/s12885-022-10017-4 | DOI Listing |
Parasit Vectors
January 2025
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Shandong, 250012, People's Republic of China.
Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.
Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFBMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!