Objective: To study the clinico-radiological paradox in multiple sclerosis (MS) relapse by analyzing the number and location of gadolinium-enhanced (Gd+) lesions on brain MRI before methylprednisolone (MP) treatment.

Methods: We analyzed brain MRI from 90 relapsed MS patients in two Phase IV multicenter double-blind randomized clinical trials that showed the noninferiority of different routes and doses of MP administration. A 1.5- or 3-T brain MRI was performed at baseline before MP treatment and within 15 days of symptom onset. The number and location of Gd+ lesions were analyzed. Associations were studied using univariate analysis.

Results: Sixty-two percent of patients had at least 1 Gd+ brain lesion; the median number was 1 (interquartile range 0-4), and 41% of patients had 2 or more lesions. The most frequent location of Gd+ lesions was subcortical (41.4%). Gd+ brain lesions were found in 71.4% of patients with brainstem-cerebellum symptoms, 57.1% with spinal cord symptoms and 55.5% with optic neuritis (ON). Thirty percent of patients with brain symptoms did not have Gd+ lesions, and only 43.6% of patients had symptomatic Gd+ lesions. The univariate analysis showed a negative correlation between age and the number of Gd+ lesions (p=0.002).

Conclusion: Most patients with relapse showed several Gd+ lesions on brain MRI, even when the clinical manifestation was outside of the brain. Our findings illustrate the clinico-radiological paradox in MS relapse and support the value of brain MRI in this scenario.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nrleng.2021.10.005DOI Listing

Publication Analysis

Top Keywords

gd+ lesions
28
brain mri
20
lesions
10
gd+
9
brain
9
brain lesions
8
multiple sclerosis
8
sclerosis relapse
8
clinico-radiological paradox
8
number location
8

Similar Publications

China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.

View Article and Find Full Text PDF

Dynamic change of polarity in spread through air spaces of pulmonary malignancies.

J Pathol

January 2025

Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Spread through air spaces (STAS) is a histological finding of lung tumours where tumour cells exist within the air space of the lung parenchyma beyond the margin of the main tumour. Although STAS is an important prognostic factor, the pathobiology of STAS remains unclear. Here, we investigated the mechanism of STAS by analysing the relationship between STAS and polarity switching in vivo and in vitro.

View Article and Find Full Text PDF

Mid-level visual processing represents a crucial stage between basic sensory input and higher-level object recognition. The conventional model posits that fundamental visual qualities like color and motion are processed in specialized, retinotopic brain regions (e.g.

View Article and Find Full Text PDF

BRD4-targeted photodegradation nanoplatform for light activatable melanoma therapy.

Biomaterials

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China. Electronic address:

The targeted protein degradation (TPD) strategy modulates tumor growth pathways by degrading proteins of interest (POIs) and has reshaped anti-tumor drug research and development. Recently, the emergence of photodegradation-targeting chimeras (PDTACs) and laser irradiation at specific sites enables precise spatiotemporal controllability of TPD. Capitalizing on the advances of PDTACs, herein, we report a nanoplatform for efficiently delivering PDTAC molecule for photodegradation of bromodomain-containing protein 4 (BRD4) proteins, the key activators of oncogenic transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!