Functional characterization of putative ecdysone transporters in lepidopteran pests.

Insect Biochem Mol Biol

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Pesticide Science Lab, Department of Crop Science, Agricultural University of Athens, Greece. Electronic address:

Published: December 2022

The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2022.103830DOI Listing

Publication Analysis

Top Keywords

ecdysone
8
putative ecdysone
8
organic anion
8
ecdysone mediated
8
functional characterization
4
characterization putative
4
ecdysone transporters
4
transporters lepidopteran
4
lepidopteran pests
4
pests insect
4

Similar Publications

Activin β Is Critical for Larval-Pupal Transition in the 28 Spotted Lady Beetle Henosepilachna vigintioctopunctata.

Arch Insect Biochem Physiol

January 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

The activin cascade is activated when a pair of extracellular ligand (Myoglianin, Myo; Activin β, Actβ; Dawdle, Daw) binds to two pairs of transforming growth factor β (TGF) serine-threonine receptor kinases, TGF-β type I (Baboon, Babo) and II receptors. However, the roles of activin way have not well been explored in non-Drosophilid insects. In the present paper, we compared the functions of Activin β (Actβ) ligand and receptor isoform BaboB in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata.

View Article and Find Full Text PDF

Responses of biological characteristics and detoxification enzymes in the fall armyworm to methoxyfenozide stress.

J Econ Entomol

January 2025

Hubei Engineering Technology Center of Forewarning and Management of Agricultural and Forestry Pests, Yangtze University, Jingzhou 434000, PR China.

Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group.

View Article and Find Full Text PDF

The mosquito is a vector of dengue, Zika, and chikungunya. The mosquito's reliance on blood facilitates the transmission of these viral pathogens to humans. Digestion of blood proteins depends on the biphasic expression of serine proteases, with trypsin-like activity contributing to most of the activity in the midgut.

View Article and Find Full Text PDF

The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii.

Insect Sci

January 2025

Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.

Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins.

View Article and Find Full Text PDF

As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!