Nitrate (NO) contamination of groundwater is a major health concern worldwide as it can lead to serious illnesses such as methemoglobinemia and cancer. Autotrophic denitrification is a smart approach for treating groundwater, being typically organic-deficient. Lately, biogenic sulfur (S) has emerged as a sustainable, free, and high-efficiency substrate to fuel membrane bioreactors (MBRs) treating contaminated groundwater. However, the effects of moderate temperature and biomass concentration on the performance and fouling of the S-fed MBR were not investigated previously. This study shows that biomass levels of ~1 g MLVSS/L limit membrane fouling but also denitrification efficiency. Biomass augmentation up to 3 g MLVSS/L enhanced denitrification but worsened fouling due to increase of extracellular polymeric substance (EPS) levels in the bulk liquid. Temperature decrease from 30 °C to 20 °C halved denitrification efficiency, which could be partially recovered through bioaugmentation. The mechanisms affected by temperature decrease, practical applications, and future research needs were discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158470DOI Listing

Publication Analysis

Top Keywords

temperature biomass
8
biomass augmentation
8
autotrophic denitrification
8
membrane bioreactors
8
denitrification efficiency
8
temperature decrease
8
denitrification
5
impact temperature
4
biomass
4
augmentation biosulfur-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!