AI Article Synopsis

  • Researchers are increasingly focused on immobilized biomaterials for their effective ability to biosorb pollutants in environmental biotechnology.
  • A novel biocomposite (TE-OP@C), made from Thamnidium elegans cells, olive pomace, and chitosan, demonstrated impressive removal rates for toxic Cu(II) ions, achieving up to 98% efficiency under continuous conditions.
  • Characterization techniques confirmed its effectiveness and stability, showing potential for innovative approaches to treat copper contamination in wastewater.

Article Abstract

Immobilized biomaterials have recently attracted researchers' attention in the field of environmental biotechnology due to their effective biosorption performances. In this respect, a novel hybrid biocomposite based on Thamnidium elegans cells, olive pomace, and chitosan (TE-OP@C) was produced and tested for the first time to remove a target pollutant. It was successfully employed to eliminate toxic Cu(II) ions. Uptake efficiency of the biocomposite was significantly greater than that of T. elegans and T. elegans-olive pomace, despite the much lesser amount of biocomposite used. Freundlich model best fitted the equilibrium data, and the pseudo-second-order kinetic model followed Cu(II) uptake. The maximum removal efficiencies in batch and continuous systems were determined to be 96 % and 98 %, respectively. After eight cycles, the biosorption and recovery efficiencies of TE-OP@C were higher than 90 %. Biocomposite was able to remove approximately 90 % and 88 % of Cu(II) from real wastewater in batch and continuous systems, respectively. FTIR analysis, zeta potential measurements, EDX, and SEM findings confirmed the Cu(II) uptake. XRD and BET analysis were also performed for biocomposite characterization. Breakthrough and exhausted points were determined as 80 and 150 min, respectively. The findings potentially lead to a new perspective on the treatment of copper contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.08.207DOI Listing

Publication Analysis

Top Keywords

hybrid biocomposite
8
cuii uptake
8
batch continuous
8
continuous systems
8
biocomposite
5
biocomposite thamnidium
4
thamnidium elegans/olive
4
elegans/olive pomace/chitosan
4
pomace/chitosan efficient
4
efficient bioremoval
4

Similar Publications

The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.

View Article and Find Full Text PDF

An overview of various industrial and bio-applications of unavoidable bio-waste materials reported in the literature over the last 25 years is presented in this review. Calcium-based food wastes or "unavoidable bio-wastes" are hybrid bio-composite materials, consisting of a softer organic matrix surrounding a stiff mineralized ceramic phase. A wide range of different bio-wastes that are already in use or are investigated for multipurpose applications are presented.

View Article and Find Full Text PDF

Water absorption properties of graphene nanoplatelets filled bamboo/kenaf reinforced polylactic acid hybrid composites.

Int J Biol Macromol

December 2024

Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.

Environmental issues have resulted in the forming of sustainable materials, including natural fiber-reinforced PLA composites; nonetheless, this composite has low water resistance, resulting in poor composite performance. This research aims to investigate the impact of adding a small amount of graphene nanoplatelets (GNP) on the water absorption (WA) characteristic of bamboo/kenaf-reinforced PLA hybrid composites. The physical behavior and water resistance of the composites, as well as the mechanical performance and surface after 14 days of immersion, were comprehensively investigated.

View Article and Find Full Text PDF

A synergistic strategy for formulating a facile and cost-effective soybean protein-based adhesive via co-crosslinking and inorganic hybridization.

Int J Biol Macromol

December 2024

Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; Key Laboratory of Lignocellulosic Material Science and Technology of Heilongjiang Province, Harbin 150040, China. Electronic address:

Article Synopsis
  • Soybean protein-based adhesives (SPAs) are eco-friendly and renewable, but their effectiveness is limited due to issues like moderate bonding strength, poor water resistance, and high costs.
  • A new SPA was developed by combining inexpensive branched melamine-urea-glyoxal (MUG) with polyamidoamine-epichlorohydrin (PAE) resins and incorporating bentonite (BT) for added strength and flame resistance.
  • This innovative approach significantly improved the adhesive’s performance, increasing dry strength by 61.2% and reducing costs by 19.5%, making it a promising option for various applications in bio-adhesives and bio-composites.
View Article and Find Full Text PDF

Basalt-based natural fiber hybrid composites with fillers are always the most anticipated composite material candidates for lightweight structural applications. Current work focusses on the preparation, characterization and testing of Basalt (B)/Hibiscus vitifolius (HV) based epoxy biocomposites with and without cashew nutshell fillers. Individual fiber reinforced composites (with 40 vol% of fibers) and hybrid composites (with 40 vol% of fibers in the ratio 1:1) filled with 10-30 vol% of fillers were manufactured using compression moulding techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!