A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Factor H related proteins modulate complement activation on kidney cells. | LitMetric

Complement activation at a particular location is determined by the balance of activating and inhibitory proteins. Factor H is a key regulator of the alternative pathway of complement, and genetic or acquired impairments in Factor H are associated with glomerular injury. The human Factor H-related proteins (FHRs) comprise a family of five proteins that are structurally related to Factor H. Variations in the genes or expression levels of the FHRs are also associated with glomerular disease, although the mechanisms of glomerular protection/injury are incompletely understood. To explore the role of the FHRs on complement regulation/dysregulation in the kidney, we expressed and purified recombinant murine FHRs (FHRs A, B, C and E). These four distinct FHRs contain binding regions with high amino acid sequence homology to binding regions within Factor H, but we observed different interactions of the FHRs with Factor H binding ligands, including heparin and C3d. There was differential binding of the FHRs to the resident kidney cell types (mesangial, glomerular endothelial, podocytes, and tubular epithelial). All four FHRs caused complement dysregulation on kidney cell surfaces in vitro, although the magnitude of the effect differed among the FHRs and also varied among the different kidney cells. However, only FHR E caused glomerular complement dysregulation when injected in vivo but did not exacerbate injury when injected into mice with ischemic acute kidney injury, an alternative pathway-mediated model. Thus, our experiments demonstrate that the FHRs have unique, and likely context-dependent, effects on the different cell types within the kidney.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691546PMC
http://dx.doi.org/10.1016/j.kint.2022.07.035DOI Listing

Publication Analysis

Top Keywords

fhrs
11
complement activation
8
kidney cells
8
associated glomerular
8
binding regions
8
kidney cell
8
cell types
8
complement dysregulation
8
factor
7
kidney
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!