Disinfection in water treatments induces microplastics (MPs) to produce various derivative products, among which the volatile organic compounds (VOCs) are still poorly understood. Ultraviolet (UV), chlorine and UV/chlorine disinfections were used to treat polypropylene (PP), polystyrene (PS) and polyvinylchloride (PVC) in this study. Modifications were observed on the MP surfaces, including melting, cracks, folds, and even forming oxygen-containing structures, resulting in the release of a diversity of VOCs. The polymer types of MPs influenced the VOCs characteristics. PP released alkanes, alkenes and aldehydes, while PVC released alkanes, alkenes and halogenated hydrocarbons. VOCs from PS were dominated by unique aromatic alkanes, alkenes and aldehydes. These derived VOCs are generated during different disinfections with distinct mechanisms. UV-C at 254 nm induced direct scission and radical oxidation on MPs. The derived VOCs were mainly bond-breaking fragments. Chlorination relied on HOCl/OCl electrophilic reactions, resulting fewer VOCs since C-C skeleton MPs have strong resistance to electrophilic reactions. UV/chlorination promotes the generation of chlorine radicals and hydroxyl radicals, thereby causing oxidative damage. Various oxidized VOCs, such as benzaldehyde and acetophenone, were formed. The disinfection reactions can produce various VOCs from MPs, posing potential risks to the ecological environment and human beings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!