Computational prediction for the metabolism of human UDP-glucuronosyltransferase 1A1 substrates.

Comput Biol Med

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources / Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China. Electronic address:

Published: October 2022

AI Article Synopsis

  • UDP-glucuronosyltransferase 1A1 (UGT1A1) is crucial for detoxifying various substances, making its metabolic profile important for avoiding drug interactions.
  • The study developed machine learning models to predict the metabolism of UGT1A1 substrates, using eight methods, with Random Forest, Random Subspace, and J48 performing the best.
  • The models showed high accuracy with AUC values between 0.901 and 0.997 and successfully predicted new metabolites, providing a solid strategy for enhancing drug metabolism and minimizing clinical drug-drug interactions.

Article Abstract

UDP-glucuronosyltransferase (UGT) 1A1, one of the most important isoforms in UGTs superfamily, has attracted increasing concerns for its special role in the clearance and detoxification of endogenous and exogenous substances. To avoid the clinical drug-drug interactions, it is of great importance to have the knowledge of the metabolic profile of UGT1A1 substrates early. Herein, we purposed to establish machine learning models to predict the metabolic propeties of UGT1A1 substrates. On the basis of the literature-derived substrates database of UGT1A1, automatic metabolism prediction models for the aromatic hydroxyl (ArOH) and carboxyl (COOH) groups were developed with eight machine learning methods, among which, three methods, i.e. Random Forest, Random Subspace and J48, illustrated the best performance either for the aromatic hydroxyl and the carboxyl model. The models illustrated good robustness when they were evaluated with functions like "Precision", "Recall", "F-Measure", "AUC", "MCC", etc. Nice accuracy was observed for the aromatic hydroxyl and carboxyl model of these methods, whose AUCs ranged from 0.901 to 0.997. Additionally, the ArOH model was applied to predict the UGT1A1-mediated metabolism of an external set. Two new unknown substrates, cytochrome P450 (CYPs)-mediated metabolites of gefitinib, were predicted and identified, which were validated by in vitro assays. In summary, this study provides a reliable and robust strategy to predict UGT1A1 metabolites, which will be helpful either in rational-optimization of drug metabolism or in avoiding drug-drug interactions in clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105959DOI Listing

Publication Analysis

Top Keywords

aromatic hydroxyl
12
drug-drug interactions
8
ugt1a1 substrates
8
machine learning
8
hydroxyl carboxyl
8
carboxyl model
8
substrates
5
computational prediction
4
metabolism
4
prediction metabolism
4

Similar Publications

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic compounds containing -CF moieties (aryl-CF) including many pharmaceuticals and agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-TFMP), a known transformation product of the pharmaceutical fluoxetine.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

Molecular composition of hydroxyl radical-resistant organics in municipal solid waste leachate.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:

Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!