Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins.

Methods Mol Biol

Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Published: September 2022

Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662813PMC
http://dx.doi.org/10.1007/978-1-0716-2229-2_22DOI Listing

Publication Analysis

Top Keywords

ultrafast force-clamp
8
force-clamp spectroscopy
4
spectroscopy microtubule-binding
4
microtubule-binding proteins
4
proteins optical
4
optical trapping
4
trapping instrumental
4
instrumental deciphering
4
deciphering translocation
4
translocation mechanisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!