High-level production of xylose from agricultural wastes using GH11 endo-xylanase and GH43 β-xylosidase from Bacillus sp.

Bioprocess Biosyst Eng

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.

Published: October 2022

As a promising feedstock, alkali-extracted xylan from lignocellulosic biomass is desired for producing xylose, which can be used for renewable biofuels production. In this study, an efficient pathway has been established for low-cost and high-yield production of xylose by hydrolysis of alkali-extracted xylan from agricultural wastes using an endo-1,4-xylanase (XYLA) from Bacillus safensis TCCC 111022 and a β-xylosidase (XYLO) from B. pumilus TCCC 11573. The optimum activities of recombinant XYLA (rXYLA) and XYLO (rXYLO) were 60 ℃ and pH 8.0, and 30 ℃ and pH 7.0, respectively. They were stable over a broad pH range (pH 6.0-11.0 and 7.0-10.0). rXYLO showed a relatively high xylose tolerance up to 100 mM. Furthermore, the yield of xylose from wheat straw, rice straw, corn stover, corncob and sugarcane bagasse by rXYLA and rXYLO was 63.77%, 71.76%, 68.55%, 53.81%, and 58.58%, respectively. This study demonstrated a strategy to produce xylose from agricultural wastes by integrating alkali-extracted xylan and enzymatic hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-022-02778-wDOI Listing

Publication Analysis

Top Keywords

agricultural wastes
12
alkali-extracted xylan
12
production xylose
8
xylose agricultural
8
xylose
6
high-level production
4
wastes gh11
4
gh11 endo-xylanase
4
endo-xylanase gh43
4
gh43 β-xylosidase
4

Similar Publications

The objective of this study is to enhance the capacity of struvite-phosphate forming reactor utilized in the production of phosphorus fertilizer from wastewater collected from mobile toilets, characterized by phosphorus (P) concentrations of 5.0 ± 1.1 g/l.

View Article and Find Full Text PDF

Antibiotic resistance gene pollution in poultry farming environments and approaches for mitigation: A system review.

Poult Sci

January 2025

College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China. Electronic address:

Antibiotic resistance genes (ARG) pollution in poultry farming environments has become increasingly critical, primarily driven by the widespread use of antibiotics in animal husbandry. Prolonged antibiotic use has led to the emergence of ARGs and antibiotic-resistant bacteria, spreading via horizontal and vertical gene transfer. The complexity of ARG pollution in poultry farming arises from the unique farming practices, physiological characteristics of poultry, and manure management methods, with manure, wastewater, and air serving as significant vectors for ARG dissemination.

View Article and Find Full Text PDF

Towards circularity for agro-waste: Minimal soil hazards of olive pomace bioconverted frass by insect larvae as an organic fertilizer.

J Environ Manage

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

As global populations escalate and the demand for food and feed intensifies, the generation of agri-food waste is becoming an increasingly critical issue. Addressing this challenge is crucial for optimizing food production and advancing sustainable waste management practices. In this context, insects, including the Black Soldier Fly (BSF, Hermetia illucens), present opportunities for circularity through the bioconversion of organic waste.

View Article and Find Full Text PDF

Postnatal growth retardation (PGR) frequently occurs during early postnatal development of piglets and induces high mortality. To date, the mechanism of PGR remains poorly understood. Adipose tissue-derived microbes have been documented to be associated with several disorders of metabolism and body growth.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!