Background: In order to ensure eligibility for living kidney donation, donor candidates undergo a thorough medical evaluation. This process might reveal hitherto undetected medical conditions, leading to refusal of the kidney donor candidate. Detection of such conditions may, however, also have a lifesaving effect. We report on 13 years of data from our living donor transplantation program on kidney donor candidates who were diagnosed with major medical conditions during evaluation.
Materials And Methods: We performed a retrospective analysis of living kidney donor candidates who attended our transplant center between January, 2007 and December, 2019. The main focus was on newly diagnosed medical conditions that required immediate medical attention and their prognostic significance.
Results: Of the 436 donor candidates who were evaluated for living kidney donation at our transplant center, 192 (44%) were accepted, while 244 (56%) were excluded from donation. Interestingly, 81 (33.1%) of the ineligible donor candidates were newly diagnosed as having a medical condition that required immediate attention. While 45 (18.5%) candidates were newly diagnosed with diabetes or prediabetes, 12 (4.9%) candidates had hitherto undetected malignancies, 10 candidates (4.1%) cardiac disease, five (2.0%) hypertension with end-organ damage, and four (1.6%) suffered from kidney disease. The remaining four candidates (1.6%) were diagnosed with gastrointestinal diseases, and one candidate (.4%) had an endocrine disorder.
Conclusion: A comprehensive evaluation process for living kidney donation facilitates the identification of life-changing diagnoses in a significant proportion of candidates and secures immediate medical attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ctr.14810 | DOI Listing |
Biomolecules
January 2025
Department of Chemistry, Molecular Basis of Disease, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA.
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the 'push-pull' system.
View Article and Find Full Text PDFBrain
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India.
The incorporation of a selenoimidazolium-based chalcogen bond (ChB) donor into a bis-heteroleptic Ru(II) complex (Ru-Se) has been designed for the first time to explore its anion-sensing properties and understand its selectivity to specific classes of anions. Photophysical studies demonstrate the receptor's selectivity toward phosphates, while H NMR displays its ability to recognize both I and HPO among the different halides and oxoanions through ChB interaction in CHCN and dimethyl sulfoxide- solvents, respectively. Additionally, microscopic studies such as DLS and TEM reveal that the selective turn-on sensing of HPO and HPO compared to I is driven by supramolecular aggregation behavior.
View Article and Find Full Text PDFChemistry
January 2025
Middle East Technical University: Orta Dogu Teknik Universitesi, Chemistry, Universiteler Mah., 06800, Cankaya, TURKEY.
This study introduces a new donor group capable of activating click-type [2+2] cycloaddition-retroelectrocyclizations, generally known for their limited scope. Target chromophores were synthesized using isocyanate-free urethane synthesis. The developed synthetic method allows for the tuning of the optical properties of the chromophores by modifying the donor groups, the acceptor units, and the side chains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!