Perspectives on the Molecular Mediators of Oxidative Stress and Antioxidant Strategies in the Context of Neuroprotection and Neurolongevity: An Extensive Review.

Oxid Med Cell Longev

Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India.

Published: September 2022

Molecules with at least one unpaired electron in their outermost shell are known as free radicals. Free radical molecules are produced either within our bodies or by external sources such as ozone, cigarette smoking, X-rays, industrial chemicals, and air pollution. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. Although ROS (reactive oxygen species) are formed in the GI tract, little is known about how they contribute to pathophysiology and disease etiology. When reactive oxygen species and antioxidants are in imbalance in our bodies, they can cause cell structure damage, neurodegenerative diseases, diabetes, hypercholesterolemia, atherosclerosis, cancer, cardiovascular diseases, metabolic disorders, and other obesity-related disorders, as well as protein misfolding, mitochondrial dysfunction, glial cell activation, and subsequent cellular apoptosis. Neuron cells are gradually destroyed in neurodegenerative diseases. The production of inappropriately aggregated proteins is strongly linked to oxidative stress. This review's goal is to provide as much information as possible about the numerous neurodegenerative illnesses linked to oxidative stress. The possibilities of multimodal and neuroprotective therapy in human illness, using already accessible medications and demonstrating neuroprotective promise in animal models, are highlighted. Neuroprotection and neurolongevity may improve from the use of bioactive substances from medicinal herbs like , , and Many neuroprotective drugs' possible role has been addressed. Preventing neuroinflammation has been demonstrated in several animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9439934PMC
http://dx.doi.org/10.1155/2022/7743705DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
neurodegenerative diseases
12
neuroprotection neurolongevity
8
reactive oxygen
8
oxygen species
8
linked oxidative
8
animal models
8
perspectives molecular
4
molecular mediators
4
mediators oxidative
4

Similar Publications

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!